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Abstract
Causal effect estimation under observational studies is challenging
due to the lack of ground truth data and treatment assignment bias.
Though various methods exist in literature for addressing this prob-
lem, most of them ignore multi-dimensional treatment information
by considering it as scalar. Recently, certain works have demon-
strated the utility of this rich yet complex treatment information into
the estimation process, resulting in better causal effect estimation.
However, these works have been demonstrated on either graphs or
textual treatments. There is a notable gap in existing literature in
addressing higher dimensional data such as images that has a wide
variety of applications. In this work, we propose a model named
NICE (Network for Image treatments Causal effect Estimation),
for estimating individual causal effects when treatments are images.
NICE demonstrates an effective way to use the rich multidimen-
sional information present in image treatments that helps in obtain-
ing improved causal effect estimates. We then provide theoretical
guarantees of NICE performance by deriving an upper bound on
PEHE (Precision in the Estimation of Heterogeneous Effects). To
evaluate the empirical performance of NICE, we propose a novel
semi-synthetic data simulation framework that generates Potential
Outcomes (POs) when images serve as treatments. Empirical results
on these datasets, under various setups including the zero-shot case,
demonstrate that NICE significantly outperforms baselines.
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1 Introduction
Causal effect estimation in observational studies aims to understand
the impact of specific treatments on particular outcomes using ob-
served data [12, 14]. It remains a critical and challenging problem
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in the field of causal inference. It has widespread applications to
domains such as healthcare [22], economics [20], social sciences [9],
education [6], entertainment [25] and e-commerce [2]. In this work,
we specifically study Individual Treatment Effect (ITE) estimation
for image treatments. ITE focuses on estimating the impact of a
treatment at an individual user level, as opposed to average causal
effects, which apply to entire populations or sub-populations. ITE
helps in personalizing treatments based on user attributes. Some of
the use-cases of ITE across various domains including personaliza-
tion of content, product, and investment plan recommendations in
the entertainment, e-commerce, and finance industries, respectively.

In causal effects estimation literature, majority of the works rep-
resent treatments in a one-hot encoding format or as categorical in
nature. But, often these treatments can be multi-dimensional such as
images, text and graphs, and contain rich auxiliary information. If
made available, they can potentially be used to improve the causal
effects estimation. This raises a question whether the causal effects
estimates can be improved by utilizing treatments’ auxiliary infor-
mation in the estimation process. To that end, there are a limited
number of works [4, 10, 11] in the literature that try to address the
above question. These works have demonstrated ways of effective
utilization of treatments’ auxiliary information in the ITE estimation
and showcased improved results. However, all these works have
considered either graph or textual treatments, in their respective
experiments. In this work, we study the ITE estimation problem for
image treatments and demonstrate an effective way to utilize their
auxiliary information, resulting in improved ITE estimates.

We now provide motivation for our problem, ITE estimation for
image treatments, with the following prevalent use-cases in our
daily lives. Consider an OTT (Over-The-Top) or a video streaming
application that displays its contents using thumbnails to the users.
Suppose each content is present in multiple thumbnail variants and
the goal is to personalize thumbnails for users to maximize the
user engagement. This problem can be posed as an ITE estimation
problem where thumbnails and user preferences to them correspond
to treatments and their effects respectively.

Consider another application in e-commerce that sells products by
displaying product images on their platform. Each product typically
features multiple images (photos) captured from various angles
and under different lighting conditions. Suppose, if the goal is to
personalize product display images to maximize click through rates
then it can be approached using our framework by considering
product images as treatments and estimating users’ preferences as
treatment effects.

We now briefly talk about the key challenges in our work. The
first and foremost challenge is the lack of existing datasets for the
ITE estimation of image treatments. It necessitated us to simulate a
new dataset that required extensive research and experimentation in
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terms of the appropriate image data and mathematical formulation
of their induced effects on users. Next, even with the few existing
works [4, 10, 11] in the literature that utilize treatments’ auxiliary
information none of them show empirical results with images as
treatments. Finally, our setup containing multiple treatments under
observational studies increases the possibility of confounding bias
in the data due to the imbalanced assignment of treatments to users.

We now outline the salient contributions of our work that address
the aforementioned challenges.

• First, we begin by noting that our problem setup, which
involves images as treatments, itself is novel. The broader
area of incorporating treatments’ auxiliary information into
ITE estimation is also a relatively recent development, with
GraphITE [4] being the first work to appear in year 2021.
Since then, only a limited number of works have explored
this area.
• Second, we propose a semi-synthetic data simulation setup

that generates Potential Outcomes (POs) for the case of mul-
tiple image treatments.
• Third, we propose a novel architecture, NICE, for ITE esti-

mation of image treatments with a combination of MSE and
Maximum Mean Discrepancy (MMD) losses.
• Fourth, we provide theoretical guarantees for a broad class

of algorithms, including NICE, all of which share the same
properties, by deriving an upper bound on an error estimate,
specifically PEHE.
• Next, we showcase the superior performance of NICE against

baselines on PEHE across various treatment assignment bias
conditions in numerical experiments.
• Finally, we also conduct experiments under zero-shot scenar-

ios where models are evaluated on unseen treatments during
training. Under these settings too, we observe that NICE
outperforms baselines by a significant margin.

2 Literature Survey
In this work, we deal with the ITE estimation at individual user
level as opposed to the predominantly studied Average Treatment
Effects (ATE) [13, 18], estimated at the whole population level in
the literature. Specifically, we study ITE estimation under multiple
image treatments setup by utilizing treatments’ auxiliary information
in the estimation hence we restrict ourselves contrasting our work
with only ITE estimation under multiple treatments and works that
utilized treatments’ auxiliary information in the estimation. Most of
the works that involve multiple treatments [3, 15, 16, 23, 24] do not
consider the rich treatment information in the estimation and merely
represent them as scalars using one hot encoding.

There are few existing works [4, 10, 11] that utilized treatments’
auxiliary information in the ITE estimation under multiple treatments
setup. The authors in [4] considered the problem of ITE estimation
for multiple graph treatments, different from our setup of image
treatments, and demonstrated ways to utilize the graph treatments
information to obtain improved causal effect estimates. The work
in [10] deals with the ITE estimation for structured treatments such
as graphs, images and text by incorporating their information in the
estimation process. However, their algorithm, SIN, is evaluated only
on the datasets with graph treatments in their experiments. SIN’s

performance on image treatments datasets has not been studied yet,
making SIN one of the baselines for our work. The following latest
work [11] also utilizes treatments’ auxiliary information for ITE
estimation. However, it primarily addresses zero-shot tasks, where
the model estimates the causal effects of treatments not seen during
training.

3 Problem Formulation
In this section, we briefly outline the problem considered in this work.
Let 𝑘 ∈ N and 𝑛 ∈ N denote the number of available treatments and
the number of instances or users. We use 𝑖, 𝑥 and 𝑡 for referencing
users, their covariates and treatments respectively. Let 𝑥𝑖 ∈ X ⊂ R𝑑 ,
𝑡𝑖 ∈ {1, 2, · · · , 𝑘}, denote covariates, index of assigned treatment of
user-𝑖 respectively. We use 𝐼𝑡 ∈ I ⊂ R𝑚 to denote the actual image
corresponding to the treatment-𝑡 .

We follow the Rubin-Neyman [14] POs framework for intro-
ducing the problem. Let 𝑌𝑖,𝑡 ∈ Y denotes the POs of user-𝑖 when
treatment-𝑡 is applied. Since 𝑡𝑖 is the treatment given to user-𝑖, 𝑌𝑖,𝑡𝑖
denotes the observed (factual) outcome of user-𝑖 . For brevity pur-
poses, we write 𝑌𝑖,𝑡𝑖 as 𝑌𝑖,𝑡 . Further, whenever the user is understood
from the context then we write 𝑌𝑖,𝑡 as just 𝑌𝑡 . Given user-𝑖 with
covariates 𝑥𝑖 , and a pair of treatments 𝑎, 𝑏, define the ITE, using the
notation 𝜏𝑎,𝑏 (𝑥𝑖 ), as below:

𝜏𝑎,𝑏 (𝑥𝑖 ) = E
[
𝑌𝑖,𝑎 | 𝑥 = 𝑥𝑖

]
− E

[
𝑌𝑖,𝑏 | 𝑥 = 𝑥𝑖

]
. (1)

In our setup, we assume that the treatments are images and are
available to the model. In the following, we provide the techni-
cal formulation of our problem statement. Given 𝑛 observations,
{𝑥𝑖 , 𝐼𝑡𝑖 , 𝑡𝑖 , 𝑌𝑖,𝑡𝑖 }𝑛𝑖=1, of users with covariates 𝑥𝑖 , their assigned image
treatments, 𝐼𝑡𝑖 , treatment indices, 𝑡𝑖 , and the corresponding observed
POs, 𝑌𝑖,𝑡𝑖 our goal is to estimate ITEs, given in Equation (1), for all
pairs of treatments.

We quantify a model’s performance using the standard metric in
the literature named PEHE, defined as follows [16]:

𝜖PEHE =
1(𝑘
2
) 𝑘∑︁
𝑎=1

𝑎−1∑︁
𝑏=1

[
1
𝑛

𝑛∑︁
𝑖=1
(𝜏𝑎,𝑏 (𝑥𝑖 ) − 𝜏𝑎,𝑏 (𝑥𝑖 ))2

]
, (2)

where 𝜏 (·) represents the estimated ITEs produced by the model.

4 Proposed Model
The NICE framework, given in Algorithm 1, designed for ITE esti-
mation with image-based treatments, relies on the following three
standard assumptions [7] in the literature: Unconfoundedness (Con-
ditional Independence), Positivity (Overlap) and Stable Unit Treat-
ment Value Assumption (SUTVA). Our proposed model, NICE,
addresses ITE estimation by utilizing treatments’ auxiliary informa-
tion, specifically images. Figure 1 illustrates the detailed architecture
of the NICE model, comprising three key steps mentioned below.

A. Generating representations for both covariates and treatments
simultaneously then concatenating them.

B. Employing individual treatment head networks to generate
counterfactual estimates.

C. Computing a regularization loss to mitigate the treatment
assignment bias along with regression loss to ensure accurate
predictions.

Detailed explanations of our model architecture are as follows.
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Algorithm 1: NICE Training

Input: Observational data: D = {
(
𝑥𝑖 , 𝐼𝑡𝑖 , 𝑡𝑖 , 𝑌𝑖,𝑡

)
}𝑛
𝑖=1 ∼

Dtrain,Dval, and hyper parameters 𝛼 ≥ 0 and 𝛽 ≥ 0.
Output: An outcome prediction model: 𝑓 (Φ,Ψ,Π),
where Π = (Π1,Π2, · · · ,Π𝑘 )

1: Initialize parameters: Φ : MLP,Ψ : MLP,Π : MLPs
2: while not converged do
3: Sample a mini-batch

𝐵 = {(𝑥𝑖𝑜 , 𝐼𝑡𝑖𝑜 , 𝑌𝑖𝑜 ,𝑡𝑖𝑜 )}
𝐵
𝑜=1 ⊂ Dtrain

4: Mini-batch approximation of Regression Loss
L1 =

1
|𝐵 |

∑ |𝐵 |
𝑜=1 (𝑌𝑖𝑜 ,𝑡𝑖𝑜 − 𝑌𝑖𝑜 ,𝑡𝑖𝑜 )

2

5: Mini-batch approximation of the Treatment Regularization
Loss

L2 =
1
(𝑘2)

𝑘∑
𝑎=1

𝑎−1∑
𝑏=1

MMD ({Φ}𝑡=𝑎, {Φ}𝑡=𝑏 )

6: Update Functions:
𝑓 (Φ,Ψ,Π) ← 𝑓 (Φ,Ψ,Π) − 𝜆.∇(𝑓 (Φ,Ψ,Π))

7: Minimize 𝛼 · L1 + 𝛽 · L2 using SGD
8: end while

𝑥

Covariates

Observed
Treatment

Λ Ψ
Generate Image

Embeddings

Φ

Covariate
Representations

Φ;Ψ

Π0

Π𝑘

Treatment Head
Layer(s)

L1 (𝑌𝑡𝑜𝑏𝑠 , 𝑌𝑡𝑜𝑏𝑠 )

L2 (Φ𝑡=𝑎,Φ𝑡=𝑏)
Treatment

Regularization Loss

Figure 1: NICE : Network for Image treatments Causal effect
Estimation

4.1 Learning Representation of User Covariates
and Observed Image Treatments

For consistent estimation of causal effects, in line with Assump-
tion (1) of [17], we choose two functions in the NICE architecture
for representing covariates and image treatments. To that end, we
employ two distinct Fully Connected (FC) networks to learn rep-
resentations of covariates, 𝑥 ∈ X, and observed image treatments
𝐼𝑡 ∈ I, capturing their low-dimensional embeddings. Specifically,
we define two functions, Φ : X → R𝑑1 and Ψ : Λ(I) → R𝑑2 , to
extract representations for covariates and treatment images.

The utility of learning covariate representations to enhance causal
effect estimation has been previously demonstrated in the litera-
ture [17]. Similarly, learning treatment representations has been
explored, particularly in graph-based contexts, as in Graphite [4],
SIN [10] and CaML [11] algorithms. In our approach, we first use
an existing image embedding model, denoted by Λ, for obtaining
image embeddings. Then, these image embeddings are fed to a rep-
resentation network, Ψ. Currently, we considered two popular well
studied models in the literature such as ResNet [5] and VGG [19] as

candidates for Λ in the NICE model. In particular, Λ is used solely to
infer image treatment embeddings and is not a trainable component
in the NICE model.

Note that, the standard multiple treatment setting utilizes one-hot
encoding of discrete treatments. However, this approach fails to
leverage the rich structural information inherent to image treatments
and consequently suffers in causal effect estimates. Further, we
concatenate the covariates and treatment representations to create
a joint embedding, which is then utilized by the treatment head
networks for ITE estimation.

4.2 Treatment Head Networks
In the second part of our model, we leverage concatenated embed-
dings of user covariates and treatments representations as a unified
input to distinct treatment head networks corresponding to each
treatment category. Given 𝑘 available treatments, we train 𝑘 number
of FC networks to learn the functions for each individual treatment,
aimed at estimating the POs. We denote these treatment head net-
works as Π𝑡 for 𝑡 ∈ {1, 2 · · · , 𝑘}. Mathematically, for a user−𝑖 with
covariates 𝑥𝑖 and observed treatment 𝑡obs = 𝑡 , Π𝑡 is defined as:

Π𝑡 (Φ(𝑥𝑖 ),Ψ(Λ(𝐼𝑡 ))) = 𝑤𝑡𝜎

(
𝑊 𝑙

𝑡 · · ·𝜎
(
𝑊 1

𝑡 (Φ(𝑥𝑖 ),Ψ(Λ(𝐼𝑡 )))
))

,

where 𝑊 𝑙
𝑡 and 𝑤𝑡 represent the weights of the 𝑙-th FC layer and

the regression layer in the network head-𝑡 , respectively. The neural
network bias terms follow the same rule and are omitted here for sim-
plicity. With both components of the model described, our model’s
prediction of the PO for treatment 𝑡 given instance 𝑖 is defined as:
𝑌𝑖,𝑡 = Π𝑡 (Φ(𝑥𝑖 ),Ψ(Λ(𝐼𝑡 )) .

4.3 Loss Function
We optimize NICE using a weighted combination of regression loss
(L1) and treatment regularization loss (L2), with the total loss de-
fined as L = 𝛼L1+𝛽L2, where 𝛼 and 𝛽 are tunable hyperparameters.
We detail each loss component below.

To achieve high predictive accuracy on observed outcomes, we
employ the traditional mean square error loss. Given that each treat-
ment group exhibits a unique distribution, optimizing the regression
loss enables us to capture the approximate means for each treatment
group. Specifically, we optimize the head network corresponding to
the observed treatment 𝑡 . The regression loss function L1 is defined
as: L1 =

1
𝑛

∑𝑛
𝑖=1 (𝑌𝑖,𝑡 − 𝑌𝑖 )2 .

We use the treatment regularization loss computed using covari-
ate representations, to address treatment assignment bias — a cru-
cial step in our model. Considering that the covariate distributions
across treatments may differ, our goal is to achieve a balanced repre-
sentation that accounts for treatment assignment bias. To that end,
special cases of Integral Probability Metrics (IPM) have been uti-
lized in the literature to obtain a balanced representation [8]. We
employ a special case of IPM, specifically MMD loss [21], to ob-
tain a balanced representation of covariates across all treatments. In
particular, the treatment regularization loss computes the average
MMD distance between covariate representations across all treat-
ment pair combinations, whose mathematical formulation is given
as: L2 = 1

(𝑘2)
∑𝑘
𝑎=1

∑𝑎−1
𝑏=1 MMD ({Φ}𝑡=𝑎, {Φ}𝑡=𝑏 ) , where {Φ}𝑡=𝑎

denotes covariate representation for respective treatment subgroup.
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This approach aims to optimize covariate representations, thereby
mitigating the confounding effects.

5 Theoretical guarantees
In this section, we consider an arbitrary family of algorithms that
share the same structure as NICE and derive an upper bound on
PEHE. We begin by deriving bounds for the case of binary treatment
i.e., 𝑡 = 0 (control) or 1 (test). In our case of image treatments,
𝑡 = 0 can be interpreted as providing some default image treat-
ment to the user. We assume that given 𝑡, the corresponding 𝐼𝑡 is
deterministic and known. We assume there exists a joint distribu-
tion 𝑝 (𝑥, 𝑡, 𝑌1, 𝑌0) that satisfies unconfoundedness, positivity, and
SUTVA. Let 𝑝𝑡=1 (𝑥) ≜ 𝑝 (𝑥 | 𝑡 = 1) and 𝑝𝑡=0 (𝑥) ≜ 𝑝 (𝑥 | 𝑡 = 0)
denote the covariate distributions under each treatment. Note that
our theoretical results follow the framework established by [17].

Assumption 5.1. The representation functions Φ : X → R𝑋 and
Ψ : I → R𝐼 are twice differentiable and invertible.

Definition 5.2. Define 𝑝𝑡=1Φ (𝑟𝑥 ) ≜ 𝑝Φ (𝑟𝑥 | 𝑡 = 1) and 𝑝𝑡=0Φ (𝑟𝑥 ) ≜
𝑝Φ (𝑟𝑥 | 𝑡 = 0) are the conditional probability distributions induced
by the function Φ on representation space R𝑋 . Note that, as Φ is
an invertible function, the induced probability distributions can be
directly derived using change of variables formula.

Let Π : R𝑋 × (R𝐼 ; {0, 1}) → Y1 be a hypothesis function that
maps Φ(𝑥), Ψ(𝐼𝑡 ), and 𝑡 to a scalar prediction. We decompose Π into
Π0 and Π1, corresponding to the treatment assignment 𝑡 ∈ {0, 1}.
Let 𝐿 : Y ×Y → R+ denote a loss function. We define two losses:
one on the factual and another on the counterfactual data.

Definition 5.3. Let the expected loss for user 𝑥 , the assigned treat-
ment index 𝑡 and the corresponding actual treatment 𝐼𝑡 be defined as:
𝑙Π,Φ,Ψ (𝑥, 𝐼𝑡 , 𝑡) =

∫
Y 𝐿 (𝑌𝑡 ,Π (Φ(𝑥),Ψ(𝐼𝑡 ), 𝑡)) 𝑝 (𝑌𝑡 | 𝑥) 𝑑𝑌𝑡 . Then,

define expected factual and counterfactual losses as follows:

𝜖F (Π,Φ,Ψ) =
∫
X×{0,1}

𝑙Π,Φ,Ψ (𝑥, 𝐼𝑡 , 𝑡) 𝑝 (𝑥, 𝑡)𝑑𝑥𝑑𝑡

𝜖CF (Π,Φ,Ψ) =
∫
X×{0,1}

𝑙Π,Φ,Ψ (𝑥, 𝐼𝑡 , 𝑡) 𝑝 (𝑥, 1 − 𝑡)𝑑𝑥𝑑𝑡

We now define the above factual loss for the treated and control
groups separately below, and the same can be defined for the coun-
terfactual loss as well.

𝜖𝑡=1F (Π,Φ,Ψ) =
∫
X
𝑙Π,Φ,Ψ (𝑥, 𝐼1, 1) 𝑝𝑡=1 (𝑥)𝑑𝑥

𝜖𝑡=0F (Π,Φ,Ψ) =
∫
X
𝑙Π,Φ,Ψ (𝑥, 𝐼0, 0) 𝑝𝑡=0 (𝑥)𝑑𝑥

Let 𝑓 : X × (I; {0, 1}) → Y be a hypothesis function. For
instance, we can have 𝑓 (𝑥, 𝐼𝑡 , 𝑡) = Π (Φ(𝑥),Ψ(𝐼𝑡 ), 𝑡) .
Definition 5.4. For a given hypothesis function 𝑓 , define expected
PEHE as follows:

𝜖PEHE (𝑓 ) =
∫
X
(𝑓 (𝑥, 𝐼1, 1) − 𝑓 (𝑥, 𝐼0, 0) − E [𝑌1 − 𝑌0 | 𝑥])2𝑝 (𝑥)𝑑𝑥 .

Note that the PEHE, as given in Equation (2) restricted to binary
treatment case, serves as an unbiased estimator for the above in the
finite sample case.
1Here, (R𝐼 ; {0, 1}) denotes the concatenation of the treatment index 𝑡 to R𝐼 along axis
0.

Figure 2: Few example posters considered as treatments

Definition 5.5. Denote 𝜎2
𝑌𝑡
(𝑝 (𝑥, 𝑡)) as the variance of 𝑌𝑡 w.r.to the

distribution 𝑝 (𝑥, 𝑡) given below:
𝜎2
𝑌𝑡
(𝑝 (𝑥, 𝑡)) =

∫
X×Y (𝑌𝑡 − E[𝑌𝑡 | 𝑥])

2 𝑝 (𝑌𝑡 | 𝑥)𝑝 (𝑥, 𝑡)𝑑𝑌𝑡𝑑𝑥 .
We define 𝜎2

𝑌𝑡
= min{𝜎2

𝑌𝑡
(𝑝 (𝑥, 𝑡)), 𝜎2

𝑌𝑡
(𝑝 (𝑥, 1 − 𝑡))} and 𝜎2

𝑌
=

min{𝜎2
𝑌0
, 𝜎2

𝑌1
}.

We now present our technical results, which provide an upper
bound on the PEHE; proofs are provided in the Appendix.

Theorem 5.6. Let Φ : X → R𝑋 and Ψ : I → R𝐼 are twice differen-
tible and invertible functions. Let Π be a hypothesis function. Let G
denote a family of functions 𝑔 : R𝑋 × (R𝐼 ; {0, 1}) . Assume the loss
function 𝐿 used to define 𝑙Π,Φ,Ψ is the squared loss function. Further,
assume that there exists a constant 𝐷Φ,Ψ > 0 s.t. the loss function
𝑙 (·) satisfies the following: 1

𝐷Φ,Ψ
𝑙Π,Φ,Ψ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼𝑡 ), 𝑡

)
∈ G

for 𝑡 ∈ {0, 1}. Then, we have

𝜖PEHE (Π,Φ,Ψ) ≤ 2(𝜖𝑡=0F (Π,Φ,Ψ) + 𝜖𝑡=1F (Π,Φ,Ψ)

+ 𝐷Φ,ΨIPMG
(
𝑝𝑡=1Φ , 𝑝𝑡=0Φ

)
− 2𝜎2𝑌 ), (3)

where IPMG (𝑝, 𝑞) be the IPM induced by G between probability
distributions 𝑝 and 𝑞, 𝜖𝑡=0F (·) and 𝜖𝑡=1F (·) are given in Definition 5.3
and 𝜎2

𝑌
is given in Definition 5.5.

Corollary 5.7. Consider the set up of 𝑘 number of treatments, and
under the conditions of Theorem 5.6, we have the following:

𝜖PEHE (Π,Φ,Ψ) ≤
2
𝑘

∑︁𝑘

𝑎=1
𝜖𝑡=𝑎F (Π,Φ,Ψ)︸                       ︷︷                       ︸

MSE loss

+

4
𝑘 (𝑘 − 1)

∑︁𝑘

𝑎=1

∑︁𝑎−1
𝑏=1
(𝐷Φ,ΨIPMG

(
𝑝𝑡=𝑎Φ , 𝑝𝑡=𝑏Φ

)
︸                                                          ︷︷                                                          ︸

Average IPM loss

−2min{𝜎2𝑌𝑎 , 𝜎
2
𝑌𝑏
}).

Remark 5.8. Note that the loss function used in NICE is inspired
by the above result, with the aim of tightening the bound. This is
achieved by minimizing a weighted sum of the MSE loss and the
average IPM (MMD here) loss across all treatments pairs.

6 Data Simulation
Evaluating causal effects is challenging due to the lack of ground
truth for counterfactuals in observational data. Prior work often
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addresses this by creating semi-synthetic datasets, where covariates
and treatments are real but POs are synthetically generated. However,
to the best of our knowledge, there are no existing datasets available
for our problem that involve images as treatments. Therefore, we
focus on generating new semi-synthetic datasets to evaluate NICE
algorithm against the baselines. Specifically, in our case, treatment
images correspond to real world data, user covariates and POs are
synthetically generated.

To simulate a realistic dataset under our setting, we design a
setup inspired by personalization tasks in domains such as movie
recommendations. Each user is represented as a 512-dimensional
embedding, encapsulating the user’s preference for specific attributes
related to movies. The treatments in our setup are represented as
images, specifically movie posters, which are also embedded into
a 512-dimensional space to enable a direct mapping between the
visual features of the treatments and the users’ preferences. Treat-
ment assignment is performed based on the alignment between user
preferences and poster attributes. For example, a user with a strong
preference for action and science fiction genres is more likely to be
assigned a poster featuring futuristic visuals and intense action ele-
ments. The observed outcome corresponds to the user’s engagement
level, such as their likelihood of selecting or interacting with the
poster, quantified as a continuous variable.

We generate our dataset using PosterLens [1] that contains posters
of various movies and their respective ResNet [5] embeddings. We
first randomly draw 20,000 posters’ ResNet embeddings, of size
512, from the PosterLens dataset. These embeddings are used as
a proxy for users’ covariates 2. For a given user with covariates,
our goal is to estimate their opinion on the shown poster, a real
valued scalar. Our hypothesis is that users like the posters similar to
their preferences. Note that, here, treatments are the posters shown
to users and their opinions are considered as a proxy for the POs
(treatment effects). Few example posters considered as treatments
are given in Figure 2. We generate multiple datasets based on the
number of available treatments, that can be 4, 8 and 16.

To generate POs for the 𝑘 number of treatments setup we first
generate (𝑘 + 1) centroids as follows. Either randomly select (𝑘 + 1)
ResNet embeddings from the 20,000 embeddings selected above, or
train a KMeans clustering algorithm on the 20,000 embeddings with
(𝑘 + 1) clusters as an input and take the resultant centroids. We use
𝑧𝑖 to denote centroids. We use 𝑌𝑖,𝑡 to denote final POs for user-𝑖 and
treatment-𝑡 . Our final POs are product of two quantities �̃�𝑖,𝑡 and 𝑑𝑖,𝑡
that are generated as follows.

• Generation of �̃�𝑖,𝑡 : For each treatment-𝑡 , generate 𝜇𝑡 and 𝜎𝑡 as
follows: 𝜇𝑡 ∼ N(0.45, 0.15) and 𝜎𝑡 ∼ N(0.1, 0.05)3 . Then,
�̃�𝑖,𝑡 is an i.i.d sample drawn fromN(𝜇𝑡 , 𝜎𝑡 ). Observe that the
distribution of �̃�𝑖,𝑡 is solely dependent on the treatment-𝑡 .
• Generation of 𝑑𝑖,𝑡 : It tries to measure the preference of user

with covariates 𝑥𝑖 to a treatment represented using its ResNet
embedding which is defined as:
𝑑𝑖,𝑡 = 𝑥𝑇

𝑖
𝑧𝑡 + 𝑥𝑇𝑖 𝑧𝑘+1 ∀ 1 ≤ 𝑖 ≤ 𝑛&1 ≤ 𝑡 ≤ 𝑘 .

2Due to the lack of datasets for image treatments, poster embeddings are considered (as
a proxy) for users’ covariates.
3We ensure that 𝜎𝑡 > 0 by regenerating samples whenever a non-positive sample is
produced.

Given the above, the final POs, denoted by 𝑌𝑖,𝑡 for any 1 ≤ 𝑖 ≤ 𝑛

and 1 ≤ 𝑡 ≤ 𝑘, are defined as

𝑌𝑖,𝑡 = 𝑐�̃�𝑖,𝑡𝑑𝑖,𝑡 = 𝑐�̃�𝑖,𝑡

[
𝑥𝑇𝑖 𝑧𝑡 + 𝑥

𝑇
𝑖 𝑧𝑘+1

]
, (4)

where 𝑐 > 0 is a fixed constant and we keep it as 5 in the experiments.

Table 1: Performance comparison of NICE vs baselines across
various values of 𝑘. Here, 𝜅𝑎 = 10, 1 ≤ 𝑎 ≤ 𝑘 is chosen.

Method 𝑘 = 4 𝑘 = 8 𝑘 = 16
TarNet 128.2 ± 24.1 137.7 ± 26.7 152.8 ± 15.7
GraphITE 128.3 ± 24.5 135.3 ± 22.1 141.1 ± 12.8
SIN 127.7 ± 24.7 134.7 ± 22.1 139.4 ± 13.1
CaML 127.7 ± 24.7 138.0 ± 20.6 139.7 ± 13.0
NICE-ResNet 91.9 ± 6.7 104.5 ± 12.7 114.1 ± 6.2
NICE-VGG 97.3 ± 6.4 104.6 ± 12.8 112.0 ± 5.6

Table 2: Performance comparison of NICE in a zero-shot setting
against baselines, to assess ITE estimation on unseen treatments.

Method 𝑘 = 4 𝑘 = 8 𝑘 = 16
TarNet 131.8 ± 29.2 150.7 ± 22.5 155.0 ± 23.7
GraphITE 128.3 ± 25.2 136.7 ± 19.3 145.1 ± 23.6
SIN 128.3 ± 26.5 133.2 ± 19.4 137.9 ± 13.9
CaML 120.7 ± 24.5 133.4 ± 17.8 135.9 ± 14.0
NICE-ResNet 90.0 ± 6.5 101.6 ± 13.7 110.4±8.9
NICE-VGG 95.3 ± 6.5 101.1 ± 16.0 107.3 ± 10.1

We briefly describe the observed treatment generation process,
following the approaches in [8, 15, 16]. Let 𝑝𝑖,𝑡 denote the probabil-
ity of treatment-𝑡 assigned to user-𝑖, defined as:

𝑝𝑖,𝑡 = softmax
(
𝜅𝑖𝑌𝑖,𝑡

)
, (5)

where 𝜅 = [𝜅1, 𝜅2, · · · , 𝜅𝑘 ] > 0, is a set of parameters that controls
the treatment assignment bias. In other words, choosing 𝜅𝑎 ≫ 𝜅𝑏
for 𝑏 ≠ 𝑎 makes the treatment assignment distribution skewed
toward treatment−𝑎. For a given user-𝑖, we randomly assign a treat-
ment with the above probabilities, 𝑝𝑖,𝑡 , and call it as the observed
treatment for that user.

7 Experiments
In this section, we provide details of the experiments conducted to
evaluate the performance of NICE against various baselines. We
begin by outlining the baselines considered in the experiments, fol-
lowed by a comparison of NICE performance with these baselines
across different scenarios, including zero-shot tasks. In all our ex-
periments, we use the datasets as described in the Data Simulation
section and all models are evaluated using the square root of PEHE
metric defined in Equation (2). All model parameters are provided
in the Appendix due to space limitations.

7.1 Baseline Methods
We compare our NICE with adaptations of existing methods to our
problem, that leverage treatment attributes for estimating ITEs. To
that end, we include modified versions of GraphITE [4], CaML [11],
and SIN [10] in the baselines, as these algorithms incorporate treat-
ments’ auxiliary information to enhance ITE estimation. In partic-
ular, since GraphITE, SIN, and CaML use GCN for representing
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graph treatments, we adapted these methods by replacing graph rep-
resentations with image representations, specifically using ResNet
embeddings of the image treatments in our case, while maintaining
the rest of the architecture. We also include an additional baseline
that does not use treatment information, to effectively demonstrate
the benefits of using treatment’s auxiliary information in the ITE
estimation. As NICE primarily operates on treatment head networks,
we consider TARNet [17] as another baseline that does not use
treatment information in the estimation.

GraphITE utilizes graphs as treatments to improve causal effect
estimation with the HSIC criterion, reducing bias introduced by
the treatment representation space. In the performance comparison
Table 1, we include results of our experiments for GraphITE with
the HSIC criterion. Similarly, we compare the performance of our
algorithm with the SIN algorithm, which primarily relies on Robin-
son decomposition to include a quasi-convergence guarantees for
estimators. CaML uses a meta-learning approach to estimate pseudo
outcomes of estimators. One common modification required for our
experiment was to replace the graph representation network in these
algorithms, as they primarily utilize graphs as treatments, with an
image representation network to evaluate NICE with these methods.

7.2 NICE Performance Assessment
We conducted a comprehensive evaluation of NICE across vari-
ous experimental settings to assess its ITE estimation capabilities.
The experimental evaluation focused on testing the hypothesis that
integrating treatments’ auxiliary information, particularly images,
enhances the accuracy of ITE estimates. To validate this hypothesis,
we employed semi-synthetic datasets as described in the Section 6.
Our results demonstrate that NICE consistently outperforms the
baselines in ITE estimation, particularly when dealing with 4, 8,
and 16 treatment groups. Results shown in all tables are means and
standard deviations of

√
𝜖PEHE values computed across 10 iterations.

We use bold face to indicate the best results in the tables. As the
number of treatments, 𝑘, increases, the complexity of the problem
escalates. Notably, the performance gap between NICE and the
baseline methods widens as 𝑘 increases, as illustrated in Table 1.

Table 3: Performance comparison of NICE vs baselines under
varying assignment bias 𝜅𝑎 = 10, 1 ≤ 𝑎 < 𝑘 and 𝜅𝑘 = 50.

Method 𝑘 = 4 𝑘 = 8 𝑘 = 16
TarNet 136.2 ± 31.8 150.9 ± 27.5 152.9 ± 18.9
GraphITE 129.6 ± 24.6 141.3 ± 22.8 145.8 ± 13.7
SIN 127.7 ± 24.7 134.7 ± 22.1 139.7 ± 12.8
CaML 129.1 ± 24.0 137.3 ± 21.4 139.3 ± ± 13.9
NICE-ResNet 91.8 ± 6.6 105.1 ± 13.2 129.2 ± 22.2
NICE-VGG 100.8 ± 12.8 112.2 ± 25.0 127.3 ± 22.7

Table 4: Performance comparison of NICE vs baselines under
varying assignment bias 𝜅𝑎 = 10, 1 ≤ 𝑎 < 𝑘 & 𝜅𝑘 = 100.

Method 𝑘 = 4 𝑘 = 8 𝑘 = 16
TarNet 131.9 ± 25.8 139.6 ± 22.7 149.0 ± 18.6
GraphITE 129.3 ± 24.3 143.0 ± 21.0 148.8 ± 13.1
SIN 127.7 ± 24.7 134.7 ± 22.1 139.5 ± 12.7
CaML 127.7 ± 24.7 134.2 ± 21.8 135.4 ± 8.4
NICE-ResNet 97.6 ± 14.3 105.4 ± 13.7 137.1 ± 21.7
NICE-VGG 95.3 ± 6.4 113.3 ± 16.5 135.4 ± 21.8

7.2.1 Treatment-embedding agnostic setting. We now eval-
uate the performance of NICE in a treatment-embedding agnostic
setup using a semi-synthetic dataset generated with ResNet embed-
dings. To assess the robustness of our approach, we also test NICE
using VGG-based image embeddings [19] to account for potential
dataset biases that might arise from our data generation process. In
experiments involving variations in the number of treatments, we ob-
serve that NICE, when utilizing VGG embeddings, often surpasses
the baseline methods and the ResNet-based NICE implementation,
as shown in experiment evaluation Tables 1-4. These results under-
score the model’s effectiveness in causal estimation across different
treatment representation embeddings.

7.2.2 Zero-shot setting. Baselines that we compare NICE with
also claim to have zero-shot capabilities for ITE estimation on un-
seen treatments during training of the models. We evaluate both
NICE and these baselines for their zero-shot abilities in the context
of images as treatment setups. For this evaluation, we use a modified
version of the PEHE metric, referred to as the rooted Zero-Shot
PEHE metric (𝜖ZS

PEHE), which is defined as follows:
𝜖ZS

PEHE = 1
𝑘−1

∑𝑘
𝑎=1
𝑎≠𝑧

[ 1
𝑛

∑𝑛
𝑖=1 (𝜏𝑎,𝑧 (𝑥𝑖 ) − 𝜏𝑎,𝑧 (𝑥𝑖 ))

2] , where 𝑧 is the

zero-shot treatment whose samples are not seen by the model during
training. Observe that in the above equation, PEHE is computed
using only treatment pairs that include the zero-shot treatment, as
our goal is to evaluate the ITE estimation capabilities of the model
in zero-shot scenarios. As illustrated in Table 2, NICE consistently
outperforms baselines in zero-shot ITE estimation for the image
treatments.

7.2.3 High treatment assignment bias setting. In real-world
scenarios, treatment assignments can be highly skewed based on
user covariates, which significantly amplifies the assignment bias. To
assess the performance of NICE under such conditions, we simulate
scenarios by increasing the treatment assignment bias 𝜅𝑎 for a spe-
cific treatment, inducing a skewed assignment toward treatment−𝑎.
Specifically, we consider two scenarios with 𝜅𝑎 = 10 for 1 ≤ 𝑎 < 𝑘

and 𝜅𝑘 = 50 and 100. As shown in Tables 3 and 4, NICE consis-
tently outperforms baselines, demonstrating robustness under highly
skewed treatment assignment scenarios.

8 Conclusion
In this study, we propose NICE, a novel framework designed to
estimate ITEs when images are served as treatments. To validate
the efficacy of NICE, we propose a unique semi-synthetic data sim-
ulation technique that generates POs for image treatments. NICE
leverages image treatments’ auxiliary information to estimate POs
in scenarios involving multiple treatments. Notably, NICE demon-
strates zero-shot causal effect estimation capabilities, enabling it
to infer causal outcomes for novel treatments. Experimental results
show that NICE consistently outperforms various baselines across
different setups, achieving the best performance on the PEHE. For
future work, we plan to explore the scalability of NICE to more
complex datasets, as well as its applicability to real-world scenarios
beyond semi-synthetic simulations. Additionally, we aim to enhance
the framework’s interpretability and extend its capabilities to han-
dle more diverse and complex treatment types, such as video or
multimodal data.
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Appendix
We begin by proving the following lemma that is required to establish Theorem 5.6. Note that, the proof of Theorem 5.6 follows along the lines
of proof of Theorem 1 in [17].

Lemma 8.1. Let Φ : X → R𝑋 and Ψ : I → R𝐼 be twice differentiable and invertible functions. Let Π be an hypothesis function. Let
G denote a family of functions 𝑔 : R𝑋 × (R𝐼 ; {0, 1}) . Let 𝐷Φ,Ψ > 0 be a constant such that the loss function 𝑙 (·) satisfies the following:
1

𝐷Φ,Ψ
𝑙Π,Φ,Ψ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼𝑡 ), 𝑡

)
∈ G for 𝑡 ∈ {0, 1}. Then, we have

𝜖𝐶𝐹 (Π,Φ,Ψ) ≤ (1 − 𝑢)𝜖𝑡=1𝐹 (Π,Φ,Ψ) + 𝑢𝜖
𝑡=0
𝐹 (Π,Φ,Ψ) + 𝐷Φ,ΨIPMG

(
𝑝𝑡=1Φ , 𝑝𝑡=0Φ

)
,

where IPM𝐺 (𝑝, 𝑞) be the Integral Probability Metric induced by G between probability distributions 𝑝 and 𝑞, 𝑢 ≔ 𝑝 (𝑡 = 1), 𝜖CF (), 𝜖𝑡=1F () and
𝜖𝑡=0F () are defined in Definition 5.3.

PROOF.

𝜖CF (Π,Ψ,Φ) − (1 − 𝑢)𝜖𝑡=1F (Π,Ψ,Φ) + 𝑢𝜖𝑡=0F (Π,Ψ,Φ)
= (1 − 𝑢)

[
𝜖𝑡=1CF (Π,Ψ,Φ) − 𝜖

𝑡=1
F (Π,Ψ,Φ)

]
+ 𝑢

[
𝜖𝑡=0CF (Π,Ψ,Φ) − 𝜖

𝑡=0
F (Π,Ψ,Φ)

]
(6)

= (1 − 𝑢)

∫
X

𝑙Π,Ψ,Φ (𝑥, 𝐼1, 1)
(
𝑝𝑡=0 (𝑥) − 𝑝𝑡=1 (𝑥)

)
𝑑𝑥

 + 𝑢

∫
X

𝑙Π,Ψ,Φ (𝑥, 𝐼0, 0)
(
𝑝𝑡=1 (𝑥) − 𝑝𝑡=0 (𝑥)

)
𝑑𝑥

 (7)

= (1 − 𝑢)

∫
R𝑋

𝑙Π,Ψ,Φ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼1 ), 1

) (
𝑝𝑡=0Φ (𝑟𝑥 ) − 𝑝

𝑡=1
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥


+ 𝑢


∫
R𝑋

𝑙Π,Ψ,Φ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼0 ), 0

) (
𝑝𝑡=1Φ (𝑟𝑥 ) − 𝑝

𝑡=0
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥

 (8)

= 𝐷Φ,Ψ (1 − 𝑢)

∫
R𝑋

1
𝐷Φ,Ψ

𝑙Π,Ψ,Φ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼1 ), 1

) (
𝑝𝑡=0Φ (𝑟𝑥 ) − 𝑝

𝑡=1
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥


+ 𝐷Φ,Ψ𝑢


∫
R𝑋

1
𝐷Φ,Ψ

𝑙Π,Ψ,Φ

(
Φ−1 (𝑟𝑥 ),Ψ−1 (𝑟𝐼0 ), 0

) (
𝑝𝑡=1Φ (𝑟𝑥 ) − 𝑝

𝑡=0
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥


≤ (1 − 𝑢)𝐷Φ,Ψ sup

𝑔∈G

��� ∫
R𝑋

𝑔(𝑟𝑥 )
(
𝑝𝑡=0Φ (𝑟𝑥 ) − 𝑝

𝑡=1
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥

��� + 𝑢𝐷Φ,Ψ sup
𝑔∈G

��� ∫
R𝑋

𝑔(𝑟𝑥 )
(
𝑝𝑡=1Φ (𝑟𝑥 ) − 𝑝

𝑡=0
Φ (𝑟𝑥 )

)
𝑑𝑟𝑥

��� (9)

≤ 𝐷Φ,ΨIPMG
(
𝑝𝑡=0Φ , 𝑝𝑡=1Φ

)
(10)

where (6) due to Lemma A3 in [17], (7) due to Definition 5.3, (8) due to Φ and Ψ are invertible functions, (9) due to a condition in the Lemma
and (10) due to the definition of IPM. □
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We now turn our attention to prove Theorem 5.6.

PROOF OF THEOREM 5.6. Note that we can write 𝜖PEHE (𝑓 ) = 𝜖PEHE (Π,Φ,Ψ) for some 𝑓 (𝑥, 𝐼𝑡 , 𝑡) = Π(Φ(𝑥),Ψ(𝐼𝑡 ), 𝑡).

𝜖𝑃𝐸𝐻𝐸 (𝑓 ) =
∫
X

((𝑓 (𝑥, 𝐼1, 1) − 𝑓 (𝑥, 𝐼0, 0)) − (𝑚1 (𝑥) −𝑚0 (𝑥)))2𝑝 (𝑥)𝑑𝑥

=

∫
X

((𝑓 (𝑥, 𝐼1, 1) −𝑚1 (𝑥)) + (𝑚0 (𝑥) − 𝑓 (𝑥, 𝐼0, 0)))2𝑝 (𝑥)𝑑𝑥 (∵ Rearranging the terms)

≤ 2
∫
X

((𝑓 (𝑥, 𝐼1, 1) −𝑚1 (𝑥))2 + (𝑚0 (𝑥) − 𝑓 (𝑥, 𝐼0, 0))2)𝑝 (𝑥)𝑑𝑥 (∵ (𝑥 + 𝑦)2 ≤ 2(𝑥2 + 𝑦2))

= 2
∫
X

((𝑓 (𝑥, 𝐼1, 1) −𝑚1 (𝑥))2𝑝 (𝑥, 𝑡 = 1)𝑑𝑥 + 2
∫
X

(𝑚0 (𝑥) − 𝑓 (𝑥, 𝐼0, 0))2)𝑝 (𝑥, 𝑡 = 0)𝑑𝑥

+ 2
∫
X

((𝑓 (𝑥, 𝐼1, 1) −𝑚1 (𝑥))2𝑝 (𝑥, 𝑡 = 0)𝑑𝑥 + 2
∫
X

(𝑚0 (𝑥) − 𝑓 (𝑥, 𝐼0, 0))2)𝑝 (𝑥, 𝑡 = 1)𝑑𝑥

(∵ 𝑝 (𝑥) = 𝑝 (𝑥, 𝑡 = 0) + 𝑝 (𝑥, 𝑡 = 1))

= 2
∫
X

(𝑓 (𝑥, 𝐼𝑡 , 𝑡) −𝑚𝑡 (𝑥))2𝑝 (𝑥, 𝑡)𝑑𝑥 + 2
∫
X

(𝑓 (𝑥, 𝐼𝑡 , 𝑡) −𝑚𝑡 (𝑥))2𝑝 (𝑥, 1 − 𝑡)𝑑𝑥

≤ 2
(
𝜖F (𝑓 ) − 𝜎2𝑌

)
+ 2

(
𝜖CF (𝑓 ) − 𝜎2𝑌

)
(∵ Due to Lemma A5 in [17])

≤ 2
(
𝜖F (𝑓 ) − 𝜎2𝑌

)
+ 2

(
(1 − 𝑢)𝜖𝑡=1𝐹 (𝑓 ) + 𝑢𝜖

𝑡=0
𝐹
(𝑓 ) + 𝐷Φ,ΨIPMG

(
𝑝𝑡=1Φ , 𝑝𝑡=0Φ

)
− 𝜎2𝑌

)
(∵ Due to Lemma 8.1 )

= 2
(
𝑢𝜖𝑡=1F (𝑓 ) + (1 − 𝑢)𝜖𝑡=0F (𝑓 ) − 𝜎2𝑌

)
+ 2

(
(1 − 𝑢)𝜖𝑡=1𝐹 (𝑓 ) + 𝑢𝜖

𝑡=0
𝐹 (𝑓 ) + 𝐷Φ,ΨIPMG

(
𝑝𝑡=1Φ , 𝑝𝑡=0Φ

)
− 𝜎2𝑌

)
(∵ Due to Lemma A3 in [17])

= 2(𝜖𝑡=0F (𝑓 ) + 𝜖𝑡=1F (𝑓 ) + 𝐷Φ,ΨIPM
(
𝑝𝑡=1Φ , 𝑝𝑡=0Φ

)
− 2𝜎2𝑌 ).

□

PROOF OF COROLLARY 5.7. It directly follows from the Theorem 5.6. It can be achieved by constructing sub-experiments with all possible
combinations of pair of treatments and considering one of them as treated and the other as control. Then, by invoking the Theorem 5.6 for each
sub-experiment establishes the desired result. □
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Model Parameters

Hyperparameter Search Range
Number of layers (Φ) {4, 6, 8}
Number of nodes (Φ) {200, 400, 600}
Number of layers (Ψ) {4, 6, 8}
Number of nodes (Ψ) {200, 400, 600}
Number of layers (Π𝑡 ) {4, 6, 8}
Number of nodes (Π𝑡 ) {200, 400, 600}

Alpha 𝛼 {0.5, 1.0}
Beta 𝛽 {0.5}

Batch Size {256, 512}
Learning Rate {0.1, 0.01}

Learning rate Decay {1e−1}
Learning Scheduler Step {10, 15}

Weight Decay {1e−4}
Dropout {0.1}

Activation {Tanh, ELU}
Table 5: Hyperparameter search range for NICE (our proposed method) and baselines on semi-synthetic datasets.

We briefly outline the experimental setup for optimizing NICE and baseline algorithms. For covariate representation, we use a fully connected
(FC) network with Tanh and ELU activation functions. Similarly, for treatment representation and causal estimator head networks, we employ
FC networks with variations in the number of nodes and layers. In dataset simulation, we generate 20, 000 instances in each experiment. The
data is split into training, validation, and test sets, and performance is assessed using the PEHE metric by comparing predicted POs against
the ground truth for all instances. To achieve optimal performance for NICE-ResNet, NICE-VGG, and baseline algorithms, we implement
techniques such as early stopping, learning rate scheduling, weight decay, and dropout.
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