| See, Therefore | Do: Estimating Causal Effects for Image
Treatments

Abhinav Thorat, Ravi Kolla’, Niranjan Pedanekar
Sony Research India

SONY 1| Sony Research India




Introduction

Background

Research gap

Problem
statement

Practical use
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Under Rubin-Neyman potential outcomes framework, Individual
Treatment Effect (ITE) is defined as:
ITE = E[Y; — Yp|X = x]

Majority of the ITE estimation literature does not consider
treatment information in the ITE estimation, and merely
represents treatments in scalar form

This work addresses ITE estimation for Image treatments
by utilizing auxiliary treatment information in the
estimation under multiple treatments setting

Thumbnail personalization in video streaming and
e-commerce platforms etc.
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Evolution of Causal Effect Estimation Algorithms
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Assumptions

Unconfoundedness

Conditional on observed covariates, potential outcomes are independent of treatment

assignment
(Yl,YQ, Yk) 1# | o

Positivity
Each user has positive probability of receiving any available treatment

O£ Plii=g|as=w) < Lyla=5k

SUTVA

Each user’s observed outcome depends only on the treatment they received, independent
of other users’ assigned treatments.
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Key contributions

Dataset simulation

« As there are no existing datasets, created new semi-synthetic datasets

« Image treatments are real, and covariates and potential outcomes are simulated

Neural Network Architecture

«» Proposed NICE architecture with shared representation learning, MSE and MMD losses

«» Capability of handling multiple treatments and zero shot (novel treatment) scenarios

Empirical evaluation

«» Demonstrated the superior performance of NICE against across various experimental setups

Theoretical guarantees

«» Derived an upper bound on the PEHE error metric for ITE estimation
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Proposed Model

Treatment-Specific Outcome Heads

For k possible treatments, NICE uses

k distinct neural network heads,
Treatment Head each predicting the potential outcome
Layer(s) for its corresponding image
treatment.

Joint Representation Learning

Learns low-dimensional
embeddings for both user Covaiiate
covariates and image treatments Covariates Representations

using separate fully connected

Image Embedding via

Pre-trained Models @~

Uses pre-trained models (e.g., I

ResNet, VGG) to extract semantic

embeddings from treatment images, T
reatment

which are then refined by a learnable  Qpserved Generate Image Regularization Loss
network. Treatment Embeddings

Counterfactual Estimation with Regularization

Combines mean squared error (MSE) for
factual outcomes with Maximum Mean
Discrepancy (MMD) to reduce treatment
assignment bias across embeddings.

Model Agnostic wrt Pretrained Model
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Loss Functions S et y

I. 1=1 R
Covariate The MSE loss ensures the model learns to
) ) Treatment Head . e
Covariates Representations accurately predict factual outcomes by minimizing

Layer(s) the error between observed and predicted values.

e .
' Loss Function: L = a-L;+ 3Ly !
N e e e e e e e e s s s —. - /
= Treatment \
Ohbsefved Generate Image Regularization Loss Treatment Regularization Loss

Treatment Embeddings
''''''''''''''''''''''''''''''' The MMD-based regularization loss promotes

f \

I j e L . balanced and unbiased representations across
L2 = (T) Z MMD ({®; ¥ }1—q, {®; ¥ }1=p) , treatments, enabling reliable counterfactual

\ 2/ a=1 b=1 , estimation even under treatment assignment bias.
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NICE achieves lower PEHE across all number of treatments settings

/Setting
% No. of treatment (K) = {4, 8, 16}

«» Moderate treatment assignment bias, K

=10 for all treatments
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NICE outperforms baselines in zero-shot scenarios

/Setting

« No. of treatment (K) = {4, 8, 16}

< Atreatment is called as zero-shot if its samples are not seen
by a model during training

% Considered 1 zero-shot treatment

¢ Moderate treatment assignment bias, k =10
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NICE performance under high treatment assignment bias scenario

/Setting N
«» No. of treatment (K) = {4, 8, 16}
« Considered High treatment assignment bias scenario,
K = 100 for a treatment and 10 for all other treatments
25.3% Lower than 21.4% Lower than
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CaML Beats NICE with
Lower Std Dev of ~13.4 units
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Theoretical Guarantees of NICE

Theorem. Let ® : X — Rx and ¥ : Z — ‘R are twice differentible and invertible functions. Let 1T be a hypothesis
function. Let G denote a family of functions g : Rx x (Ry;{0,1}). Assume the loss function L used to define /11 ¢ y is the

squared loss function. Further, assume that there exists a constant Dg > 0 s.t. the loss function [(-) satisfies the /folllowing
Tores (@1 (ry), ¥=1(ry,),t) € Gfort € {0,1}. Then, we have
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Provides an upper bound on the PEHE obtained by NICE as a function of MSE loss
computed using factual outcomes and average IPM loss between all pairs of treatments
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Conclusion

«» Studied Individual Treatment Effect (ITE) estimation problem for Image treatments

«» Proposed SOTA NICE framework that utilizes auxiliary treatment information to obtain improved causal
effect estimates

« Demonstrated NICE’s superior performance against baselines across various setups including zero-shot
and high treatment assignment bias scenarios

«» Derived an upper bound on the PEHE error metric for NICE algorithm
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