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Abstract
This paper presents an end-to-end causal machine learning (ML)
pipeline designed for real-world applications with continuous treat-
ments. The proposed framework consists of six sequential steps:
dimensionality reduction, causal identification, positivity assump-
tion violation handling, estimation, refutation and evaluation, and
policy optimization. We introduce practical contributions not cur-
rently available in existing causal ML toolkits, specifically: (1) a
method for detecting and quantifying positivity violations in con-
tinuous treatment settings (2) a novel, scalable two-stage dimen-
sionality reduction framework tailored for causal inference with
high-dimensional data; (3) the adaptation of sensitivity analysis and
estimation methods originally designed for binary treatments to
the continuous treatment space and (4) an end-to-end integration of
these components into a modular, reproducible workflow. These in-
novations address real-world challenges in causal inference that are
often not covered in theoretical frameworks but frequently encoun-
tered in industrial applications. The methodology is validated with
a synthetic dataset inspired in a real-world financial debt collection
use case, however its design can be applied to analogous problems
across different industries. Results demonstrate that the proposed
methodology offers a more computationally efficient approach and
produces less biased estimates compared to standard methods for
problems with continuous treatment and high-dimensional data.
A fully functional GitHub repository with documented code and
numbered notebooks is made available ensuring reproducibility
and practical implementation. The pipeline presented is intended
to contribute to closing the gap between academic approaches and
practical application in industry contexts where causal ML can be
highly beneficial such as the financial sector.

CCS Concepts
• Computing methodologies → Machine learning; Causal
reasoning and diagnostics.

Keywords
Causal Machine Learning, Causality, Counterfactuals, Causal Infer-
ence, Causal ML in finance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD2025, Aug 03–07, 2025, Toronto, ON
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN XXXXXXXX/25/07
https://doi.org/XXXXXXX.XXXXXXX

ACM Reference Format:
Javier Moral Hernández, Clara Higuera-Cabañes, and Álvaro Ibraín. 2025.
An End-to-End Pipeline for Causal ML with Continuous Treatments: An
Application to Financial Decision Making. In Proceedings of 3rd Workshop
on Causal Inference and Machine Learning in Practice (KDD2025). ACM, New
York, NY, USA, 12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Causal machine learning (causal ML) offers significant advantages
over predictive ML, particularly in scenarios that require under-
standing cause-and-effect relationships, providing actionable in-
sights, and avoiding spurious correlations. Unlike predictive ML,
which identifies associations and correlations, causal ML assesses
the true impact of interventions, generalize better to new scenar-
ios, and ensure fairer, more reliable outcomes. This is especially
valuable in domains where randomized control trials (RCTs) are
impractical due to ethical, regulatory, operational, or economic
constraints. [21][5].

The standard causal inference workflow includes: (1) Problem
Formulation: Defining the causal question, treatment, and out-
comes; (2) Identification: using causal discovery or expert-designed
DAGs followed by estimand identification (e.g., backdoor, front-
door) [22] [16]; (3) Estimation: applying suitable methods to es-
timate causal effects; (4) Validation: using refutation tests, bal-
ance and weights diagnostics and sensitivity analysis to ensure
robustness[37] and (5) Policy Optimization, where estimated causal
effects and counterfactuals are used to inform decision-making and
optimize interventions.

Despite its theoretical advantages, causal ML remains underuti-
lized in industry settings[19] due to significant technical challenges.
These include complex data structures, the intricacies of business
decision-making processes, and the limitations of current causal
inference frameworks when applied to industrial-scale problems.

The first critical challenge stems from the high dimensionality of
modern industrial datasets that introduce a range of interconnected
challenges for causal discovery and effect estimation. Key issues
include:

Computational Scalability: Constraint-based algorithms like PC
[35] can be efficient under sparsity, but exhibit exponential worst-
case complexity [14]. Score-based methods, such as Greedy Equiv-
alence Search (GES) [4], are further constrained by the super-
exponential growth in Markov equivalence classes [9], limiting
their practical use as dimensionality increases.

Expert Knowledge Integration: Incorporating domain exper-
tise in causal discovery is essential [18] but inherently subjec-
tive and labor-intensive. Experts must assess edge plausibility, re-
solve ambiguities, and identify spurious relationships—efforts that
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scale quadratically with the number of variables. Iterative refine-
ment compounds the complexity, requiring repeated evaluations of
changing graph structures.

Validation via Testable Implications: The number of required
conditional independence tests grows combinatorially with dataset
size, affecting both computational feasibility and statistical relia-
bility, especially as conditioning sets increase in dimension [32].
This also raises concerns over multiple testing and false discovery
control.

Adjustment Set Selection for Estimation: Identifying valid adjust-
ment sets becomes increasingly complex due to both the algorithmic
difficulty of navigating large graphs and the exponential number
of possible adjustment sets [13]. This creates a tension between
statistical efficiency and practical feasibility [38].

While much of the causal inference literature focuses on bi-
nary treatments for simplicity, many real-world decisions involve
continuous treatment variables, which presents the second ma-
jor challenge when using standard causal inference tools. Popular
estimators like T-learners and X-learners [16] are primarily de-
signed for binary treatments and struggle to generalize effectively
to continuous settings. Similarly, sensitivity analysis tools such as
E-values [37] which help assess the robustness of causal estimates
to unmeasured confounding, are typically not formulated to handle
continuous interventions, limiting their applicability in practice.

The third challenge in industrial applications of causal inference
is the violation of the positivity assumption [26]— the requirement
that all individuals have a non-zero probability of receiving any
treatment level. This assumption often fails in real-world settings
where human decision-making limits exposure to certain treat-
ments, and randomized control trials are not feasible. Early work
by Petersen et al. [23] provided a comprehensive framework for
diagnoses and remedies for positivity violations but it is mainly
focused on binary treatments. More recent approaches by Guo
et al. [10] propose solutions to continuous treatments using tech-
niques such as local density estimation, trimming, and weighting
to address regions of low treatment overlap.

Lastly, while existing Python frameworks provide valuable meth-
ods for addressing individual challenges in causal inference (e.g.,
DoWhy[33], causalml[3], EconML[25]), there remains a significant
gap in comprehensive methodological frameworks that address the
aforementioned challenges encountered in industrial applications.
For instance, DoWhy is not prepared for continuous outcome or
high dimensional data andMicrosoft EconML library offers tools for
heterogeneous treatment effect estimation but primarily focuses on
estimation rather than the complete pipeline from data preparation
to policy optimization. There exist limited work on pipelines that
simultaneously handle high-dimensional data, continuous treat-
ments, positivity violations and few data samples while providing
practical guidance for implementation in real settings.

The financial sector stands to gain significantly from causal
methods, which reveal cause-and-effect relationships beyond mere
correlations. In [11] authors provide a comprehensive overview of
the application of causal inference methods in the banking, finance,
and insurance sectors. These methods have been applied in areas
like investment management [1], fraud detection [39], and fair
credit decisions [15]. However, despite growing interest, the field
lacks standardized frameworks and example applications suited to

finance. The complexity of financial data, such as heterogeneity in
client profiles and sparsity in intervention histories—further, and
the wide range of available techniques pose challenges to effective
implementation in real settings.

This paper introduces a novel end-to-end causal machine learn-
ing framework designed to overcome the afore mentioned chal-
lenges. Validated on a financial debt collections use case and a
synthetic dataset. The work aims to promote the use of causal
methods in financial applications and other fields in which opera-
tional decision-making is critical. The paper is structured as follows.
First it outlines the study’s scope and main contribution, followed
by description of the experimental design, presentation of results,
and concluding with a discussion of findings, limitations, and future
research directions.

The code for reproducing all experiments is publicly available at
github.com/javiermoralh/causal-pipeline.

2 Problem statement / Case study
In banking, the debt collections department manages clients in
loan default using strategies like refinancing, debt sales, or write-
downs—partial debt forgiveness in exchange for immediate repay-
ment. While some clients repay successfully after a write-down,
others do not, making optimal decision-making crucial.

Traditionally, such decisions rely on expert judgment to balance
repayment likelihood and loss minimization. While automation
could enhance this process, prediction alone is insufficient— it
demands a causal understanding of how different write-down levels
affect repayment outcomes.

Though randomized controlled trials (RCTs) would offer ideal
estimates of causal effects, they are impractical in this context due to
ethical concerns and regulatory barriers. Practitioners must instead
rely on observational data, which is subject to confounding bias:
clients in worse financial health typically receive larger reductions,
making it difficult to isolate causal effects.

Given the infeasibility of RCTs, the presence of confounding, and
the need for personalized, counterfactual insights, causal inference
methods become essential for optimizing debt collection strategies
effectively and fairly.

3 Methods
In order to address the aforementioned challenges we propose a
series of steps in a form of a pipeline that practitioners can use
in order to solve domain agnostic problems as long as any of the
above issues are present. The pipeline is comprised of six steps that
can be run sequentially. These steps are depicted in Figure 4 in
Appendix D.

(1) Dimensionality Reduction: A structured approach to iden-
tify potential confounders and outcome-only causes from
high-dimensional data.

(2) Identification: A hybrid method combining algorithmic
discoverywith domain knowledge to get the final adjustment
set.

(3) Positivity Assumption Violation Handling: A frame-
work for detecting and quantifying regions of limited overlap
in treatment assignment, alongside remediation strategies
to address identified violations.

https://github.com/javiermoralh/causal-pipeline
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(4) Estimation: Methods for continuous treatment effects esti-
mation.

(5) Refutation and Evaluation: Comprehensive evaluation
techniques for estimate selection.

(6) Policy Optimization: Methodology for deriving optimal
decision policies.

This work assumes that the causal estimand of interest is identifi-
able through the backdoor criterion [22]. Consequently, every stage
of the pipeline – most notably the dimensionality-reduction and
identification procedures – are tailored to selecting and balancing
only those covariates that close backdoor paths (i.e., confounders).
This focus implies that practitioners need control merely for these
backdoor variables, simplifying the analysis while underscoring
the importance of correctly detecting them to avoid residual bias.

In the following subsections each one of this blocks is covered
in more detail.

3.1 Dimensionality Reduction
Applying causal inference to high-dimensional data requires a re-
duction in dimensionality that maintains causal integrity while
addressing computational limits and potential positivity violations.
LetD = (𝑋𝑖 ,𝑇𝑖 , 𝑌𝑖 )𝑁𝑖=1 denote the dataset, where𝑋 ∈ R𝑑 are covari-
ates, 𝑇 ∈ R is the treatment, and 𝑌 is the outcome. We propose a
two-stage selection framework to construct a reduced adjustment
set Z = Z𝑇 ∪ Z𝑌 , where Z𝑇 captures treatment predictors and
Z𝑌 includes outcome-relevant covariates. This reduction aims to
provide a manageable set of candidate adjustment variables for
the identification phase, which further refines them using causal
criteria and domain expertise to find the backdoor variables.

In Stage 1, Z𝑇 is identified using predictive machine learning-
based feature selection to capture variables predictive of treatment
assignment. Stage 2 uses dual partial-correlation analysis to identify
covariates that influence the treatment–outcome relationship and
covariates that affect only the outcome. The first type of covariates
are retained as candidate confounders—they must be controlled for
to obtain an unbiased effect under the backdoor criterion—whereas
the second type, while not mandatory, are desirable because their
inclusion can lower the variance of the causal estimate [2, 7]. The
first subset in Z𝑌 is identified by computing the partial correlation
between 𝑇 and 𝑌 , conditional on each covariate 𝑋 𝑗 :

𝜌 (𝑇,𝑌 |𝑋 𝑗 ) = Corr(Res(𝑇 ∼ 𝑋 𝑗 ), Res(𝑌 ∼ 𝑋 𝑗 )) (1)

where Res(·) denotes regression residuals. Covariates inducing
substantial deviations from the baseline correlation 𝜌 (𝑇,𝑌 ) are
retained as potential confounders. For outcome-only predictors,
variables strongly correlated with 𝑌 independent of 𝑇—determined
via 𝜌 (𝑋 𝑗 , 𝑌 |𝑇 )—are included in Z𝑌 .

The framework employs distinct approaches for treatment-related
Z𝑇 and outcome-related Z𝑌 selection, reflecting fundamental dif-
ferences in how confounding and positivity violations affect these
relationships. The framework distinguishes between treatment-
and outcome-related features due to differing vulnerability to con-
founding and positivity violations. Standard predictive machine-
learning feature selection can reliably capture treatment-related

covariates because, in most observational settings, treatment assign-
ment follows systematic decision rules that produce stable covari-
ate–treatment links even where overlap is sparse [20, 30]. However,
for outcome-related features, standard feature selection methods be-
come unreliable due to the interplay between positivity violations
and confounding. In regions where certain covariate-treatment
combinations are unobserved, traditional feature selection tech-
niques may identify spurious correlations that exist in the observed
regions but do not represent genuine causal relationships. The dual
partial correlation analysis circumvents these challenges by ex-
plicitly conditioning on covariates when examining confounders
selection and conditioning on treatment when examining outcome-
only predictor relationships.

This approach enables scalable, causally valid inference by reduc-
ing dimensionality while preserving essential confounding struc-
tures.

3.2 Identification
Following dimensionality reduction, the identification phase in-
tegrates algorithmic causal discovery with domain expertise val-
idation. As Mäkelä et al. (2022) [18] highlight, causal discovery
algorithms generate hypotheses rather than definitive conclusions,
necessitating expert refinement. This phase employs an ensemble of
methods—PC [35], FCI [36], and GES [4]—leveraging their comple-
mentary strengths to increase confidence in consistently identified
relationships.

Algorithmic outputs serve as initial structural hypotheses, itera-
tively refined through domain expertise:

• Temporal Constraints: Ensuring relationships align with
known variable orderings.

• Edge Validation: Assessing plausibility and temporal consis-
tency.

• Causal Direction: Resolving algorithmic uncertainty with
expert knowledge.

• Missing Relationships: Identifying overlooked causal links.
• Spurious Correlations: Removing statistically significant but
non-causal associations.

Identifying and removing spurious correlations remains a key
challenge, as statistical associations may lack theoretical justifica-
tion. Experts assess these cases, refining the graph through addi-
tional statistical tests and confounder control. The complexity of
this process scales quadratically with graph size, reinforcing the
importance of prior dimensionality reduction.

Final causal graphs undergo rigorous validation via testable im-
plications (conditional independence tests) until statistical and ex-
pert criteria align. The refined graph determines the adjustment
set for causal effect estimation using identification algorithms such
as the backdoor criterion [22], with outcome-related variables in-
cluded to enhance precision [7].

3.3 Positivity Assumption Violation
Quantification

We propose a three-step, model-agnostic procedure to detect re-
gions of the covariate space where lack of overlap violates the
positivity assumption for a continuous treatment based on Hirano
et al. (2004) framework [12].
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1. Treatment prediction. Fit a flexible regression 𝑓 : 𝑍 → R
that predicts 𝑇 and form residuals 𝜀 = 𝑇 − 𝑓 (𝑍 ).

2. Residual-density estimation. Estimate the conditional den-
sity of the residuals 𝑔(𝜀 | 𝑍 ) with any consistent method, e.g.

(1) kernel density estimators with data-driven bandwidth or
plug-in rules [31, 34]

(2) a homoscedastic Gaussian with analytic variance
(3) conditional normalizing flows such as theGOALDeR continuous-

GPS estimator, which learn 𝑔(𝜀 | 𝑍 ) via invertible neural
networks and naturally handle heteroscedasticity [6, 8].

The preferred model can be selected by held-out (pseudo)-log-
likelihood or PSIS-LOO.

3. Overlap quantification. For any interval [𝑡1, 𝑡2] compute
the generalised propensity score

𝑃
(
𝑇 ∈ [𝑡1, 𝑡2] | 𝑍 = 𝑧

)
=

∫ 𝑡2

𝑡1

𝑔
(
𝑡 − 𝑓 (𝑧) | 𝑧

)
𝑑𝑡 .

A practical violation is flagged whenever this probability falls below
a small tolerance 𝜖 . The scalar 𝑃 (𝑇 ∈ [𝑡1, 𝑡2] | 𝑍 ) offers a continuous
measure of violation severity, highlights covariate regions with
poor support, and guides trimming or re-weighting—without tying
practitioners to a single residual-density specification.

Common remediation strategies following Petersen et al. [23]
include (i) covariate restriction to drop variables that force non-
overlap, (ii) trimming units whose generalised propensity scores
lie in the tails, (iii) weight stabilisation / truncation to tem-
per extreme inverse probabilities, (iv) design modification or
data augmentation to avoid unlikely treatment levels, and (v)
model-based extrapolation when strong substantive knowledge
supports it. Each option trades bias for variance: trimming lowers
power, reweighting inflates uncertainty, and extrapolation leans on
unverifiable assumptions.

Before deciding on a remedy, analysts should check overlap
quality by using some diagnostic tools as (a) checking Standardised
Mean Differences of each covariate across treatment strata or after
weighting [28]; (b) plotting the GPS density to flag regions with
large density-ratios ; (c) inspecting the distribution of stabilised
inverse-probability weights for extreme values; and (d) verifying a
common support region [27] via overlayed treatment densities.

Given these challenges, the objective shifts from eliminating
violations to minimizing bias while maintaining practical utility.
This structured positivity violation framework bridges theoretical
causal inference with real-world application, enabling practitioners
to assess the validity and generalizability of causal estimates.

3.4 Estimation
With the adjustment set 𝑍 in place, the goal is to recover the con-
ditional average dose–response curves—i.e. E[𝑌 (𝑡) | 𝑍𝑖 ] for every
feasible treatment level 𝑡 . Unlike binary interventions, continu-
ous treatments require modelling this entire surface, typically by
evaluating potential outcomes at several grid points [29].

We benchmark three representative estimators (others can be
swapped in):

(1) Regression adjustment with interactions. A linear (or
logistic) model of 𝑌 on (𝑇, 𝑍 ) yields an interpretable base-
line; 𝑇 ’s coefficient and its interactions capture average and
heterogeneous effects [22].

(2) S-learner [16]. A single flexible learner fits 𝑌 = 𝑓 (𝑇, 𝑍 ).
This method can apply more advanced regularization tech-
niques in order to cap- ture complex relationships while
preventing overfitting, enabling the identification of non-
linear interactions and heterogeneous effects.

(3) Augmented IPTW for continuous 𝑇 [17]. This approach
extends the classical AIPTW methodology to accommodate
continuous treatment scenarios. Generalized Propensity Scores
produce inverse-probability weights that, combined with an
outcome model, form a doubly-robust estimator—consistent
if either component is correct.

Together, these methods span a spectrum from simple, trans-
parent baselines to more expressive and robust machine-learning
approaches.

3.5 Refutation and Evaluation
This step is aimed at detecting potentially invalid estimates in order
to avoid, as much as possible, spurious relationships that can remain
after the aforementioned steps. The choice of refutation methods,
such as, is open to the practitioner. However, in the scope of this
work we only study the effect of the following two: (1) Placebo
Treatment Replacement test [33]: With this test, actual treat-
ments are substituted with random variables following identical
distributions. Here, valid estimates should demonstrate no effect
on outcomes, manifested as flat effect curves. (2) Random Com-
mon Cause test [33]: Evaluates estimate stability by introducing
synthetic random confounders unrelated to both treatment and
outcome variables. When successful, this test must yield consis-
tent causal curves before and after the introduction of random
confounders to the adjustment set.

Residual bias attributable to unmeasured confounders may per-
sist even after the refutation procedures described above. To quan-
tify the extent to which such bias could attenuate or overturn the
estimated effects, we implement a sensitivity analysis based on
the E-value [37] framework. The E-value quantifies the minimum
strength of unmeasured confounding necessary to nullify the esti-
mated effects. Higher E-values indicate greater estimate robustness.
For continuous treatments, we extend the E-value methodology by
computing a dose-response sensitivity curve 𝐸 (𝑡), where for each
treatment level 𝑡 , we calculate the E-value required to nullify the
estimated effect for a unit change in exposure centered at 𝑡 .

Finally, estimator performance in ranking individuals by an-
ticipated uplift is assessed with the Qini curve [24], which plots
cumulative gain against the cumulative proportion of treated units
ordered by the model. The area under this curve (AUCQini) con-
denses the curve into a single, sample-size-invariant metric, thereby
enabling rigorous comparison across competing estimators.

Collectively, these three assessments—falsification tests, quanti-
tative sensitivity metrics, and uplift-oriented performance curves
constitute a concise yet rigorous validation suite for continuous-
treatment causal inference.
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4 Experimental setup
To evaluate the validity of the proposedmethod, we assess its perfor-
mance within a financial context where the objective is to determine
the optimal amount of debt write-downs that minimizes the total
expected loss. Given the sensitive nature of financial data, a real
publicly available version cannot be provided for reproducibility.
Instead, a synthetic dataset has been generated that captures the
essential characteristics and statistical properties of the original
data, while not being an exact replication.

Specifically, the data generation process incorporates: (i) a con-
tinuous treatment variable representing debt loss percentages in
the [0, 100] range, (ii) non-linear and heterogeneous treatment
effects through carefully crafted probability functions with inter-
action terms, (iii) systematic confounding bias through structured
covariate relationships, (iv) high dimensionality with 410 features
including both relevant causal variables and noisy ones, and (v)
deliberate positivity assumption violations through a logistic-based
assignment mechanism that creates regions of limited overlap in
treatment assignment. The performance of the proposed method
is then analyzed for the synthetic setting. More details on the gen-
eration process and its characteristics are explained in Appendix
A.

Evaluation targets three aspects: (i) recovery of the true causal co-
variates, (ii) accuracy of conditional average dose-response curves
which are shown in Figure 1, and (iii) computational efficiency.

Causal-variable retrieval is scored with precision and recall
against the known adjustment set. Dose-response estimation bias
is quantified by the root-mean-squared error (RMSE) between the
true and estimated curves, averaged across 100 treatment levels
on all validation cases. Specifically, for each individual 𝑖 in the
validation set, we compute both the “true” conditional average
dose-response curve 𝑓𝑖 (𝑡)–coming from our generation process as
E[𝑌 (𝑡) | 𝑍𝑖 ]–and the estimated curve 𝑓𝑖 (𝑡) at discrete treatment
levels 𝑡 ∈ {1, 2, . . . , 100}, corresponding to the percentage of debt
loss. The RMSE is then computed at each treatment level across all
individuals to obtain the individual bias B(𝑡):

B(𝑡) =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑓𝑖 (𝑡) − 𝑓𝑖 (𝑡))2 (2)

The final metric, B, is obtained by averaging all individual bi-
ases over the entire evaluation set. Estimators that fail placebo or
random-common-cause tests are discarded. Subsequently, the re-
mainingmethodologies are comparatively assessed through E-value
sensitivity analysis and Qini-AUC in order to determine optimal
performance characteristics.

Finally, we conduct an ablation study by disabling the dimension-
ality reduction and causal discovery components in the pipeline.
This analysis isolates the marginal contribution of each step to the
overall performance, providing insights into their impact on causal
identification, estimation accuracy, and computational efficiency.

A comprehensive specification of the method’s configuration,
including correlation thresholds for dimensionality reduction, al-
gorithmic choices for treatment-predictive feature derivation, and

Table 1: Comparison of Variable Identification Performance

Method Precision Recall Covariates Runtime
(min)

Baseline 0.05 1 169 >600
Dim. Reduction 0.53 1 15 3
Dim. Reduction
& Identification 0.80 1 10 4

parameters for positivity violation detection, is provided in Appen-
dix B. This documentation ensures methodological transparency
and facilitates reproducibility.

5 Results
This section presents the results obtained at each stage of the pro-
posed framework. We begin by examining improvements in causal
variable selection, including a runtime analysis to assess compu-
tational efficiency. We then evaluate the enhancements in causal
effect estimation and analyze the outputs that support informed
decision-making in the proposed case study.

5.1 Causal identification improvement
The evaluation of the dimensionality reduction (3.1) and identifica-
tion (3.2) phases reveals the effectiveness of the proposed approach
in correctly identifying control variables for causal effect estima-
tion within a high-dimensional feature space. Table 1 presents a
comparative analysis between the proposed methodology and the
baseline approach

The baseline approach achieved a precision of 0.05 with perfect
recall (1.0), selecting 169 covariates—typical of traditional causal
discovery methods applied to high-dimensional data. Among the
three algorithms tested (PC, FCI, GES), only PC completed execution
within 600 minutes, making it the basis for baseline results.

Our two-stage methodology significantly improved performance.
Dimensionality reduction increased precision to 0.53 while main-
taining recall at 1.0, reducing the covariate set to 15. The final
identification phase further improved precision to 0.80, yielding
a set of 10 covariates, including all 8 true causal controls and 2
treatment-related variables. While such variables can inflate esti-
mator variance without reducing bias [7], their inclusion remains a
known challenge in causal inference.

In terms of computational efficiency, the baseline required over
600 minutes for causal discovery, whereas the proposed approach
reduced total runtime to just 4 minutes (3 minutes for dimensional-
ity reduction and 1 minute for identification). This improvement
is critical for industrial applications, enabling rapid iteration and
expert feedback integration.

5.2 Estimates Performance
The evaluation of treatment effect estimation bias reveals signif-
icant improvements through the proposed methodology. Table 2
presents the comparative analysis of mean averaged bias across the
three evaluated approaches. The baseline methodology utilizing
the full feature set exhibits the highest estimation bias (B = 0.292,
95% CI [0.279, 0.303]), demonstrating the detrimental impact of
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high-dimensional noise and spurious correlations. Restricting the
adjustment set to the identified causal controls while omitting syn-
thetic data augmentation reduces bias by 19% (B = 0.236, 95% CI
[0.212, 0.257]), though residual bias persists due to unaddressed
positivity violations. The complete proposed methodology achieves
superior performance with B = 0.117 (95% CI [0.105, 0.131]), repre-
senting a 60% reduction in mean bias compared to the baseline.

Among the three estimation methodologies described in section
3.4, the S-learner emerged as the optimal approach. Initial refu-
tation testing conducted with 100 bootstrapped samples revealed
significant limitations in the AIPTW estimator, which failed to pass
the placebo treatment replacement test (Figure 6 in Appendix D)
at extreme debt loss percentages where the dose-response curve
should theoretically approach zero.

Consequently, subsequent sensitivity analyses through E-values
(Figure 7 in Appendix D) and cumulative gain curves (Figure 8
in Appendix D) focused exclusively on the S-learner and Linear
Regression approaches. While both methodologies demonstrated
comparable robustness in E-value analysis, the S-learner exhib-
ited markedly superior performance in the AUC curve evaluation,
ultimately justifying its selection as the primary estimation method-
ology for the comprehensive ablation study.

Table 2: Comparison of Estimation Bias Across Methodolo-
gies

Methodology Mean Bias 95% Confidence Interval
Baseline 0.292 [0.279, 0.303]
Adjustment Set Only 0.236 [0.212, 0.257]
Proposed Methodology 0.117 [0.105, 0.131]

The treatment-level bias analysis, visualized in Figure 12 in Ap-
pendix D, demonstrates consistent superiority of the proposed
methodology across the entire treatment domain. While all meth-
ods exhibit increased bias at extreme treatment values (0− 20% and
80 − 100% debt loss), the proposed approach shows particular ro-
bustness in these regions with maximum RMSE of 0.20 compared to
0.5 for the baseline. This enhanced performance is attributed to the
monotonic synthetic data augmentation strategy that effectively
mitigates positivity violations in low-density treatment regions.
The methodology maintains stable estimation quality across mid-
range treatments (20 − 80%) with RMSE consistently below 0.20,
significantly outperforming both baseline approaches.

This enhanced precision results from the synergistic combination
of dimensionality reduction’s variance minimization and synthetic
augmentation’s support expansion. The ablation study reveals that
32% of total bias reduction originates from proper adjustment set
identification, while 68% derives from addressing positivity viola-
tions through domain-informed synthetic data generation.

These results suggest that while complete elimination of estima-
tion bias remains challenging in practical applications with extreme
positivity violations, the proposed framework achieves substantial
improvements over conventional approaches.

5.3 Case Study Solution
The application of the proposed pipeline to the debt collections
case study yields two primary analytical outputs that enable in-
formed decision-making regarding optimal write-down levels. First,
the estimated causal DAG (Figure 9 in Appendix D) reveals the
underlying structural relationships between financial indicators,
demonstrating that the debt treatment assignment (write-down
percentage) is influenced by multiple customer characteristics. This
structural understanding validates the necessity of controlling for
these confounding variables to obtain unbiased treatment effect
estimates.

Second, the conditional average dose-response curves (Figure 10
in Appendix D) illustrate the heterogeneous causal effects of dif-
ferent write-down percentages on repayment probability across
the customer population. These curves represent counterfactual
predictions for each customer under varying treatment intensi-
ties, enabling precise personalization of write-down offers. The
substantial variation in curve shapes and slopes indicates marked
heterogeneity in treatment effects, suggesting that uniform write-
down policies would be suboptimal.

These estimated potential outcomes provide the foundation for
subsequent policy optimizations, where institution-specific cost
functions can be applied to determine optimal write-down levels
that balance recovery probability against financial loss.

6 Discussion and Future Work
The proposed method addresses key challenges in applying causal
machine learning to industrial contexts—challenges that are often
overlooked in existing frameworks—including high-dimensional
data, positivity assumption violations, and continuous treatments. It
introduces an end-to-end, adaptablemethodology, validated through
a financial debt collection use case, and is designed for broader ap-
plicability across industries facing similar constraints

Despite its strengths, the pipeline has limitations that warrant
further exploration: Dimensionality reduction currently relies on
linear partial correlation, which may miss non-linear relationships
and interaction effects; future improvements could incorporate
mutual information or kernel-based methods. Positivity violation
detection, based on GPS and kernel density estimation, could be en-
hanced to account for unobserved confounding. The data augmen-
tation strategy assumes a monotonic treatment-response, which
may not hold in all cases and could require adaptation for non-
monotonic scenarios.

These limitations point to promising directions for future re-
search, aimed at refining the framework and extending its utility
in complex, real-world applications.
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Appendix
A Synthetic Data-Generation
To validate the proposed methodological framework, we conducted
experimentation using synthetic data. This approach enables rig-
orous evaluation of the pipeline’s effectiveness under controlled
conditions where the true causal relationships and treatment effects
are known. The synthetic dataset was carefully designed to emulate
the characteristics and challenges encountered in real-world finan-
cial applications while incorporating specific structural properties
that test the pipeline’s capabilities.

The dataset comprises covariates sampled from probability distri-
butions approximating real financial indicators, including variables
related to credit history and debt profiles. These covariates are
categorized into three distinct groups: five confounders influenc-
ing both treatment assignment and outcome, three outcome-only
variables directly affecting repayment probability but not treat-
ment decisions, and two treatment-only variables predictive of debt
loss levels but unrelated to the outcome. This structure ensures a
realistic confounding scenario where treatment assignment is sys-
tematically biased by variables that also drive repayment outcomes.

The continuous treatment variable, representing the percent-
age of debt loss, is generated through a non-linear function of the
confounders and treatment-only variables (3). The treatment as-
signment mechanism is deliberately constructed to systematically
violate the positivity assumption. This is implemented through a
logistic-based assignment function with non-linear interactions
between covariates, followed by scaling to the [0,100] range. While
modest random noise is incorporated via truncated normal distri-
bution to maintain realism, the underlying structure ensures that
specific regions of the treatment space become practically inacces-
sible for certain covariate profiles. This design choice authentically
mirrors real-world scenarios where financial advisors assign write-
down levels based on rigid policy rules tied to customers’ financial
health, creating covariate strata with no overlap across treatment
ranges.

The outcome generation process was engineered to exhibit het-
erogeneous treatment effects as visually shown in Figure 1 and 2 in
Appendix D, where the impact of interventions varies substantially
across different covariate profiles. This heterogeneity is achieved
through a carefully crafted probability function that incorporates
both direct effects and interaction terms between treatments and
covariates (6). Concretely, the inclusion of quadratic terms and
multiplicative interactions between covariates guarantees hetero-
geneous treatment effects across individuals, with each customer
exhibiting a unique dose-response curve. When combined with the
treatment assignment mechanism, this generates a clear Simpson’s
paradox as demonstrated in Figure 3 in Appendix D, where the real
average treatment-outcome relationship differs markedly from the
observed outcome average at each treatment level.

Figure 1: Heterogeneous treatment effects in synthetic gen-
erated data - P(Y=1|T=t, X=x)

Figure 2: Heterogeneous treatment effects in synthetic gen-
erated data - Observed individual outcomes

Figure 3: Simpson’s paradox in synthetic generated data.
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To further approximate real-world data complexity, the feature
space was augmented with two additional categories of variables.
First, 100 redundant features were generated by introducing con-
trolled correlations with the existing causal variables, maintaining
separate correlation structures for confounders, treatment-only,
and outcome-only predictors. Second, 300 pure noise features were
synthesized by sampling from various probability distributions com-
monly observed in financial data, ensuring these variables maintain
no systematic relationship with either the treatment or outcome.
This enriched feature space creates a challenging environment for
causal discovery and effect estimation, testing the pipeline’s capabil-
ity to identify relevant variables and discard spurious relationships.

The synthetic data generation process thus encapsulates the core
challenges outlined in Section 2: high dimensionality, positivity
violations, continuous treatments, and heterogeneous effects. By de-
sign, it provides a controlled environment to evaluate the pipeline’s
ability to recover ground truth causal relationships, isolate con-
founding bias, and estimate personalized treatment effects—all
while mirroring the statistical complexities of real financial data.

B Pipeline configuration
B.1 Dimensionality Reduction
The dimensionality reduction phase was implemented through the
two-stage feature selection process explained in section 3.1. The
first stage utilized a hybrid approach combining Fast Correlation-
Based Filter (FCBF) with Sequential Forward Selection (SFS) to
identify variables predictive of treatment assignment. The FCBF
threshold was set to 𝛿 = 0.0001, ensuring the elimination of redun-
dant features while preserving variables with substantial pairwise
correlations to the treatment. The subsequent SFS phase employed
a CatBoost regressor configured with specific hyperparameters can
be found in Appendix. A 𝐾 = 3-fold cross-validation framework
with root mean squared error (RMSE) minimization guided feature
inclusion, terminating when marginal performance gains fell below
ΔRMSE < 0.00. The second stage refined confounder detection and
outcome prediction through dual partial correlation analyses. For
confounder identification, variables altering the treatment-outcome
relationship were retained using a threshold of 𝜌min = 0.01 on
the partial correlation difference |𝜌 (𝑇,𝑌 |𝑋 𝑗 ) − 𝜌 (𝑇,𝑌 ) |. Concur-
rently, outcome predictors were selected under a stricter threshold
of 𝜌min = 0.1 for 𝜌 (𝑋 𝑗 , 𝑌 |𝑇 ), ensuring robust associations inde-
pendent of treatment effects. Both analyses applied a correlation
threshold of 0.5 to eliminate multicollinear features, aligning with
the synthetic data’s redundancy structure. This dual-threshold ap-
proach balanced sensitivity to weak confounders with computa-
tional efficiency, critical for scalability in industrial applications.

B.2 Identification
While the methodology presented in Section 3.1 emphasizes the
critical role of domain expertise in causal discovery and graph re-
finement for real-world applications, the synthetic nature of the
experimental dataset necessitates a modified approach to maintain
experimental validity. In this controlled setting, domain knowl-
edge application is deliberately constrained to avoid inadvertently
leveraging information from the known data-generating process,

which would artificially inflate themethodology’s performancemet-
rics. Specifically, domain expertise is utilized solely for establishing
temporal priors—enforcing the logical sequence where covariates
and treatment assignment precede outcome observation—and for
correcting directional inconsistencies in algorithms that do not
inherently support temporal constraints. This restricted application
notably excludes several components outlined in Section 3.1, includ-
ing the identification of missing relationships, detection of spurious
correlations, and general edge direction refinement through expert
consultation. In cases where the initial causal discovery algorithms
produce cyclic graphs, rather than employing the comprehensive
domain knowledge-driven approach described for real-world ap-
plications, a simplified programmatic cycle-breaking procedure is
implemented to maintain methodological integrity while avoiding
reliance on the known underlying causal structure.

B.3 Positivity assumption violation
The experimental configuration for detecting and addressing posi-
tivity assumption violations employed a systematic approach based
on the methodology described in Section 3.3. For violation detec-
tion, an epsilon threshold of 𝜖 = 0.001 was established to identify
regions of practical positivity violations, defined as areas where
the conditional probability of treatment assignment falls below this
threshold. The treatment space was partitioned into consecutive 2%
intervals to facilitate granular analysis of violation patterns across
the continuous treatment domain.

Tomitigate the impact of identified positivity violations, a domain-
knowledge-driven data augmentation strategy was implemented.
This approach leverages a fundamental assumption from the bank-
ing domain: the monotonic relationship between debt loss and
repayment probability. Specifically, if a customer repays their debt
under a 60% writedown offer, it is reasonable to assume they would
also repay under more favorable conditions (70%, 80%, ..., 100%)
where a larger portion of the debt is assumed as a loss. Therefore,
a synthetic sample of this customer can be added to the dataset
where the treatment values is higher than the observed and the
debt is also repaid. Conversely, if a customer defaults under a 40%
writedown offer, they would likely default under less favorable
conditions (30%, 20%, ..., 0%) where a smaller portion of the debt is
assumed as a loss. We term this monotonicity-based augmentation
approach "domain-knowledge data-propagation."

The synthetic data generation was calibrated to augment approx-
imately 20% of the training sample size, targeting specifically the
regions identified as violating the positivity assumption. The aug-
mentation process was applied exclusively to the training dataset
to maintain the integrity of the validation split for unbiased perfor-
mance assessment. Sample generation was distributed randomly
across the problematic regions, ensuring balanced coverage of vari-
ous violation patterns.

This strategy aligns with the framework’s broader philosophy
outlined in Section 3.3, which acknowledges that the selection of
positivity violation remediation approaches must balance practi-
cal constraints against methodological rigor. Given the inherent
limitations of conventional strategies in real-world observational
data—where restricting analysis to positivity-compliant regions
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often results in prohibitively small samples, and limiting the ad-
justment set risks introducing significant confounding bias—our
domain-knowledge-driven augmentation approach represents a
pragmatic compromise between theoretical purity and practical
utility.

B.4 Estimation
The experimental evaluation employed specific implementations
for each estimation methodology. For the S-learner, a CatBoost
classifier was utilized.

The AIPTW implementation comprised three distinct compo-
nents: (i) a Generalized Propensity Score model utilizing aCatBoost
regressor combined with kernel density estimation as detailed in
Section 3.3, (ii) an outcome model employing a CatBoost classifier,
and (iii) a final model consisting of a CatBoost regressor fitted on
the pseudo-outcomes generated by the methodology, followed by
logistic regression calibration to ensure well-calibrated probability
estimates. To mitigate potential overfitting, all AIPTW component
models were trained using out-of-sample predictions through cross-
validation.

C Variables Definitions

𝑋1𝑖 = years since default
𝑋2𝑖 = default debt amount
𝑋3𝑖 = number of loans
𝑋4𝑖 = external debt
𝑋5𝑖 = number of cards
𝑋6𝑖 = loss given default
𝑋7𝑖 = number of refinances
𝑋8𝑖 = customer history length
𝑋9𝑖 = number of accounts
𝑋10𝑖 = months since first payment

*all features are standardized before applying the formula

C.1 Treatment assignment formula
The treatment value for each individual 𝑖 is generated through:

𝑇𝑖 = clip
(
100 · 1

1 + 𝑒−𝜃⊤𝑋𝑖
+ 𝜖𝑖 , 0, 100

)
(3)

where the linear predictor 𝜃⊤𝑋𝑖 is defined as:

𝜃⊤𝑋𝑖 = 0.5𝑋1𝑖 + 0.4 log(1 + 𝑋2𝑖 ) + 0.3𝑋3𝑖 + 0.3 log(1 + 𝑋4𝑖 )+
0.2𝑋5𝑖 + 0.3𝑋6𝑖 + 0.2𝑋7𝑖 + 0.1𝑋1𝑖 log(1 + 𝑋2𝑖 ) + 0.1𝑋 2

3𝑖
(4)

and 𝜖𝑖 follows a truncated normal distribution:

𝜖𝑖 ∼ TN(0, 𝜎2 = 25, 𝑎 = 0, 𝑏 = 100) (5)

The description of each variable 𝑋 𝑗𝑖 can be found in the Appen-
dix’s variables definition.

C.2 Outcome generation formula
The outcome generation process comprises two distinct stages:
an initial probability computation followed by a structured sam-
pling procedure that incorporates domain-specific monotonicity
constraints. For each individual 𝑖 , the base probability of a positive
outcome given treatment 𝑡 is initially modeled as:

𝑃 (𝑌𝑖 = 1|𝑇 = 𝑡, 𝑋𝑖 ) =

0 if 𝑡 = 0
1 if 𝑡 = 100(

𝑡
100

)exp(𝜂𝑖 ) otherwise
(6)

where the individual-specific coefficient 𝜂𝑖 is computed through:

𝜂𝑖 =0.6𝑋1𝑖 + 0.5 log(1 + 𝑋2𝑖 ) + 0.5𝑋3𝑖 + 0.4 log(1 + 𝑋4𝑖 ) + 0.3𝑋5𝑖−
0.4𝑋8𝑖 − 0.3𝑋9𝑖 − 0.2𝑋10𝑖 + 0.1𝑋1𝑖 log(1 + 𝑋2𝑖 ) + 0.1𝑋 2

3𝑖
(7)

where the description of each variable 𝑋 𝑗𝑖 can be found in the
Appendix’s variables definition. These base probabilities undergo
transformation through a binomial sampling process. The proce-
dure first applies probability bounding:

𝑝𝑖 = clip(𝑃 (𝑌𝑖 = 1|𝑇 = 𝑡, 𝑋𝑖 ), 0, 1) (8)

followed by binomial sampling to determine the realized outcome:

𝑌𝑖 ∼ Bernoulli(𝑝𝑖 ) (9)

The final conditional average dose-response curves incorporate
domain-specific monotonicity assumptions through the following
formulation, where 𝑡𝑜𝑏𝑠 represents the observed treatment level
and 𝑠 the intervention :

𝑃 (𝑌𝑖 = 1|𝑇 = 𝑠, 𝑋𝑖 ) =

0 if 𝑌𝑖 = 0 and 𝑠 ≤ 𝑡𝑜𝑏𝑠
1 if 𝑌𝑖 = 1 and 𝑠 ≥ 𝑡𝑜𝑏𝑠
𝑝𝑖 otherwise

(10)

D Figures

Figure 4: Diagram of the proposed causal pipeline.
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Figure 5: Estimates dose-response curves.

Figure 6: Placebo Treatment Replacement results

Figure 7: E-values sensitivity analysis results

Figure 8: AUC Cumulative gain curves results

Figure 9: Estimated causal DAG.

Figure 10: Individual dose-response estimated curves
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Figure 11: Random Common Cause test results. Figure 12: Estimates bias from adjustment set, baseline
pipeline and proposed methodology across debt loss per-
centages
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