

Javier Moral Hernández Clara Higuera-Cabañes Álvaro Ibraín

An End-to-End Pipeline for Causal ML with Continuous Treatments: An Application to Financial Decision Making

Business Problem - Optimizing Debt Recovery

Find the optimal debt forgiveness percentage (write-off) to maximize debt recovery... for each defaulted customer → **personalization problem**

Maximize personalised debt recovery while minimizing debt loss

Why Causal ML?

1. Decision-making problem

2. Impossibility of RCT

3. Confounding bias

4. Personalization & Heterogeneous effects

Problem Formulation

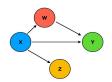
Personalized

decisions

 $\mathcal{D} = (X_i, T_i, Y_i)^{\mathsf{N}}$ $X \in \mathbb{R}^d$ are covariates $T \subseteq \mathbb{R}$ is the Treatment $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification



backdoor criterion:

- $-(T \coprod Y \mid Z)$
- $-Z \cap \mathsf{Desc}(T) = \emptyset$

Estimation

Potential Outcomes:

$$m(t,z) = E[Y|T=t,Z=z]$$

Conditional Effect:

Evaluation

- Refutation Tests

- QINI curve AUC - Estimation Variance

- Sensitivity Analysis

$$\Box(z) = m(T=1, z) - m(T=0, z)$$

 $arg_{t}max(1-t)\hat{y}(t)$

Policy optimization

Problem Formulation

 $\mathcal{D} = (X_i, T_i, Y_i)^{\mathsf{N}}$

 $X \in \mathbb{R}^d$ are covariates

 $T \in \mathbb{R}$ is the Treatment

 $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification **Identification under** high-dimensional data

backdoor criterion:

- $-(T \perp \!\!\!\perp Y \mid Z)$
- $-Z \cap \mathsf{Desc}(T) = \emptyset$

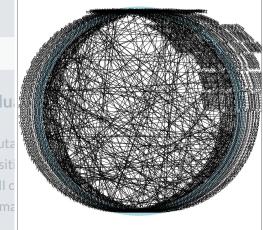
Estimation

Personalized decisions

Policy optimization

 $arg tmax (1-t)\hat{y}(t)$

Evalu



Problem Formulation

 $\mathcal{D} = (X_{i}, T_{i}, Y_{i})^{N}$

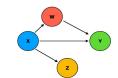
 $X \in \mathbb{R}^d$ are covariates

 $T \subseteq \mathbb{R}$ is the Treatment

 $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification



backdoor criterion:

- $-(T \perp \!\!\!\perp Y \mid Z)$
- Z ∩ Desc(T) = \emptyset

Estimation

Positivity
Assumption
violation

Potential Outcomes:

m(t,z) = E[Y|T=t,Z=z]

Conditional Effect:

 $\Box(z) = m(T=1, z) - m(T=0, z)$

Policy optimization

 $arg tmax (1-t)\hat{y}(t)$

Evaluation

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Personalized decisions

Problem Formulation

 $\mathcal{D} = (X_{i_{.}}, T_{i_{.}}, Y_{i_{.}})^{\mathsf{N}}$

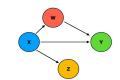
 $X \in \mathbb{R}^d$ are covariates

 $T \subseteq \mathbb{R}$ is the Treatment

 $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification



backdoor criterion:

- $-(T \perp \!\!\!\perp Y \mid Z)$
- Z ∩ Desc(T) = \emptyset

Estimation

Potential Outcomes:

m(t,z) = E[Y|T=t,Z=z]

Conditional Effect:

 $\Box(z) = m(T=1, z) - m(T=0, z)$

Continuous treatment

Personalized decisions

Policy optimization

 $arg tmax (1-t)\hat{y}(t)$

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Continuous treatment

Problem Formulation

 $\mathcal{D} = (X_{i_{.}}, T_{i_{.}}, Y_{i_{.}})^{\mathsf{N}}$

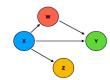
 $X \in \mathbb{R}^d$ are covariates

 $T \subseteq \mathbb{R}$ is the Treatment

 $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification



backdoor criterion:

- $-(T \perp \!\!\!\perp Y \mid Z)$
- Z ∩ Desc(T) = \emptyset

Estimation

Potential Outcomes:

m(t,z) = E[Y|T=t,Z=z]

Conditional Effect:

 $\Box(z) = m(T=1, z) - m(T=0, z)$

Pipeline integration

Personalized decisions

Policy optimization

 $arg_{t}max(1-t)\hat{y}(t)$

Evaluation

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Challenges - wrap up

01

Identification under high dimensionality

02

Positivity Assumption violation

03

Continuous treatment

04

Pipeline integration

Problem Formulation

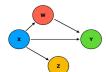
 $\mathcal{D} = (X_i, T_i, Y_i)^{\mathsf{N}}$

 $X \in \mathbb{R}^d$ are covariates

 $T \subseteq \mathbb{R}$ is the Treatment $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

Identification



backdoor criterion:

- $-(T \coprod Y \mid Z)$
- Z ∩ Desc(T) = \emptyset

Personalized decisions

 $arg_{t}max(1-t)\hat{y}(t)$

Evaluation

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Estimation

Potential Outcomes:

$$m(t,z) = E[Y|T=t,Z=z]$$

Conditional Effect:

$$\Box(z) = m(T=1, z) - m(T=0, z)$$

Proposed causal ML framework

Problem Formulation

 $\mathcal{D} = (X_i, T_i, Y_i)^{N}$ $X \in \mathbb{R}^d \text{ are covariates}$

 $T \in \mathbb{R}$ is the Treatment

 $Y \subseteq \mathbb{R}$ is the Outcome

+ causal question

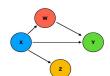
Dimensionality Reduction

- $-X \in \mathbb{R}^d$ are covariates
- -d > 400

We find controls:

 $-Z \subseteq X$

Identification

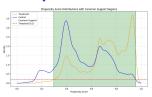


backdoor criterion:

- $-(T \coprod Y \mid Z)$
- $-Z \cap \mathsf{Desc}(T) = \emptyset$

Positivity Violation Handling

 $P(T \subseteq B \mid Z = z) > 0$ for every $B \subseteq \mathcal{F}$



Personalized decisions

Policy optimization

 $arg_{t}max(1-t)\hat{y}(t)$

Evaluation

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Estimation

Potential Outcomes:

$$m(t,z) = E[Y|T=t,Z=z]$$

Conditional Effect:

$$\Box(z) = \partial/\partial t \, m(T=t,z)$$

Proposed causal ML framework

Problem Formulation

 $\mathcal{D} = (X_i, T_i, Y_i)^{N}$ $X \in \mathbb{R}^d \text{ are covariates}$

 $T \in \mathbb{R}$ is the Treatment

 $Y \in \mathbb{R}$ is the Outcome

+ causal question

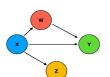
Dimensionality Reduction

- $-X \in \mathbb{R}^d$ are covariates
- -d > 400

We find controls:

 $-Z \subseteq X$

Identification

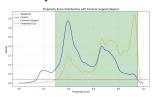


backdoor criterion:

- $-(T \perp \!\!\!\perp Y \mid Z)$
- $-Z \cap \mathsf{Desc}(T) = \emptyset$

Positivity Violation Handling

 $P(T \subseteq B \mid Z = z) > 0$ for every $B \subseteq \mathcal{F}$



Personalized decisions

Policy optimization

 $arg_{t}max(1-t)\hat{y}(t)$

Evaluation

- Refutation Tests
- Sensitivity Analysis
- QINI curve AUC
- Estimation Variance

Estimation

Potential Outcomes:

$$m(t, z) = E[Y|T=t, Z=z]$$

Conditional Effect:

$$\Box(z) = \partial/\partial t \, m(T=t,z)$$

Synthetic dataset inspired in a real-world financial debt collection use case

Real Financial variables distributions

High-dimensional data with few controls

Strong confounding bias

Continuous
Treatment [0, 100]
and normally
distributed

Positivity Assumption violation Binary Outcomes sampled from conditional probabilities

Heterogeneous Treatment effects

Non-linearities and interactions

Synthetic dataset inspired in a real-world financial debt collection use case

 X_{1i} = years since default

 X_{2i} = default debt amount

 X_{3i} = number of loans

 X_{4i} = external debt

 X_{5i} = number of cards

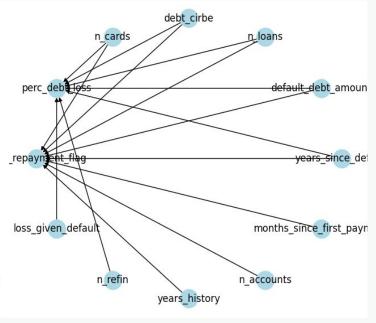
 $X_{6i} =$ loss given default

 X_{7i} = number of refinances

 X_{8i} = customer history length

 X_{9i} = number of accounts

 X_{10i} = months since first payment



C.1 Treatment assignment formula

The treatment value for each individual *i* is generated through:

$$T_i = \text{clip}\left(100 \cdot \frac{1}{1 + e^{-\theta^{\top} X_i}} + \epsilon_i, \ 0, \ 100\right)$$
 (3)

where the linear predictor $\theta^{\top} X_i$ is defined as:

$$\theta^{\top} X_i = 0.5 X_{1i} + 0.4 \log(1 + X_{2i}) + 0.3 X_{3i} + 0.3 \log(1 + X_{4i}) + 0.2 X_{5i} + 0.3 X_{6i} + 0.2 X_{7i} + 0.1 X_{1i} \log(1 + X_{2i}) + 0.1 X_{3i}^2$$
(4)

and ϵ_i follows a truncated normal distribution:

$$\epsilon_i \sim TN(0, \sigma^2 = 25, a = 0, b = 100)$$
 (5)

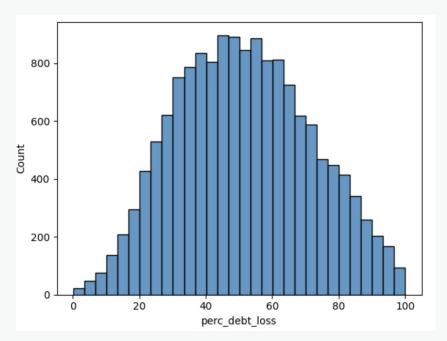
C.2 Outcome generation formula

$$P(Y_i = 1 | T = t, X_i) = \begin{cases} 0 & \text{if } t = 0\\ 1 & \text{if } t = 100\\ \left(\frac{t}{100}\right) \exp(\eta_i) & \text{otherwise} \end{cases}$$
 (6)

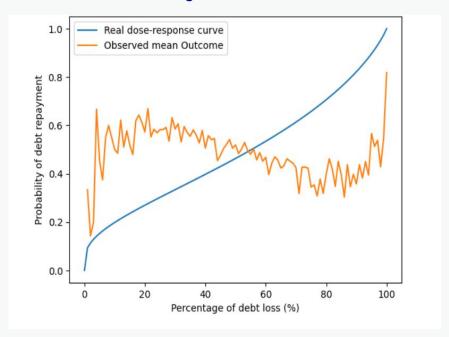
where the individual-specific coefficient η_i is computed through:

Synthetic dataset inspired in a real-world financial debt collection use case

Treatment Distribution

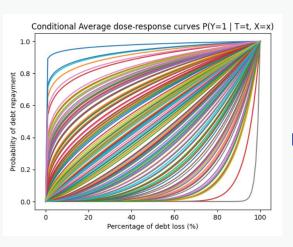


Mean observed Outcome vs Average Potential Outcome



Synthetic dataset inspired in a real-world financial debt collection use case

Real dose-response curves



$$P(Y_i = 1 | T = t, X_i) = \begin{cases} 0 & \text{if } t = 0\\ 1 & \text{if } t = 100\\ \left(\frac{t}{100}\right)^{\exp(\eta_i)} & \text{otherwise} \end{cases}$$

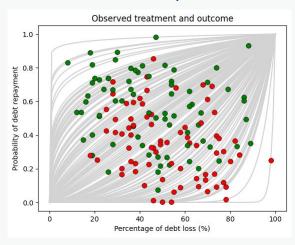
$$\tilde{p}_i = \text{clip}(P(Y_i = 1 | T = t, X_i), 0, 1)$$

Assigned observed Treatment



$$T_i = \text{clip}\left(100 \cdot \frac{1}{1 + e^{-\theta^{\top} X_i}} + \epsilon_i, \ 0, \ 100\right)$$

Observed Binary Outcomes



 $Y_i \sim \text{Bernoulli}(\tilde{p}_i)$

Dimensionality Reduction & Identification

Dimensionality reduction

 $\mathcal{D} = (X_i, T_i, Y_i)^{\mathsf{N}}$ $X \in \mathbb{R}^{\mathsf{d}}$ are covariates $T \in \mathbb{R}$ is the Treatment $Y \in \mathbb{R}$ is the Outcome

Dimensionality Reduction: We propose a two-stage selection framework to construct a reduced adjustment set (control candidates) $Z = Z_Y \cup Z_T$, where Z_T is a subset representing the Treatment predictors and Z_Y is a subset representing Outcome-relevant covariates.

Feature Selection for Predictive ML

$$T = f(X) + \varepsilon$$

*Methods: Recursive Feature Elimination, Sequential Forward Elimination, Permutation Feature Importance Filter, etc.

- Potential Confounders: $|\varrho(T, Y) - \varrho(T, Y|X_i)| > \epsilon$

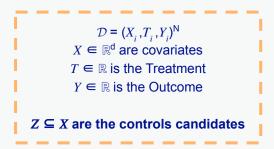
- Outcome-only predictors: $\varrho(X_i, Y|T) > \epsilon$

$$^*\varrho(T,Y|X_j) = \varrho(\text{Res}(T^-X_j^-), \, \text{Res}(Y^-X_j^-))$$

$$^*\varrho(X_j^-,Y|T) = \varrho(\text{Res}(X_j^-T^-), \, \text{Res}(Y^-T^-))$$
where $\text{Res}(\cdot)$ denotes regression residuals

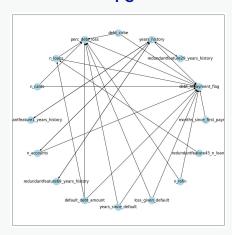
Dimensionality Reduction & Identification

Identification

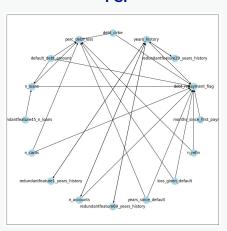


Causal Identification: ensemble of methods—Peter-Clark (PC), Fast Causal Inference (FCI), and Greedy Equivalence Search (GES)— over control candidates *Z* to increase confidence in consistently identified relationships.

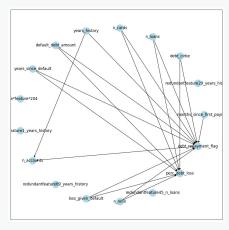
Algorithmic outputs serve as <u>initial structural hypotheses</u>, iteratively refined through domain expertise: Edge Validation, Edge Direction, Missing Edges, Spurious Correlations, etc.



FCI



GES



Addressing Positivity and Data Gaps

 $\mathcal{D} = (X_i, T_i, Y_i)^{\mathsf{N}}$ $X \in \mathbb{R}^d$ are covariates $T \in \mathbb{R}$ is the Treatment $Y \in \mathbb{R}$ is the Outcome $Z \subseteq X$ are the controls

Detection: model-agnostic procedure to detect regions of the covariate space where lack of overlap violates the positivity assumption for a continuous Treatment based on Hirano et al. (2004) GPS framework.

01 Propensity Model

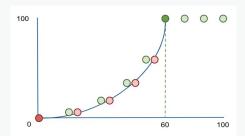
- $f: Z \to \mathbb{R}$ that predicts T
- Out of sample residuals $\varepsilon = T f(Z)$

02 Conditional Density

Model $g(\varepsilon \mid Z)$

03 Overlap Diagnostics & Remedation

$$P(T \in [t_1, t_2] | Z = z) = \int_{t_2}^{t_1} g(t - f(z) | z) dt.$$



Estimation & Evaluation with Continuous Treatment

1. Regression adjustment with interactions:

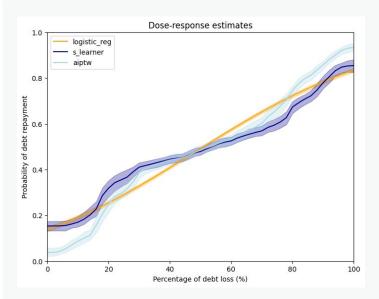
$$\hat{\mathbf{y}}_{i}(t) = \mathbf{\beta}_{0} + \mathbf{\beta}_{1}t + \mathbf{\beta}_{2}Z_{i} + \mathbf{\beta}_{3}Z_{i}t$$

2. S-learner:

$$\hat{\mathbf{y}}_{i}(t) = f(\mathbf{Z}_{i}, t)$$

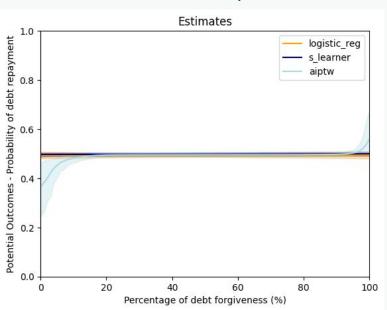
3. Augmented IPTW:

$$\hat{y}_{i}(t) = m(t, Z_{i}) + \frac{K(T_{i} - t)}{e(T_{i}, Z_{i})} (Y_{i} - m(T_{i}, Z_{i}))$$

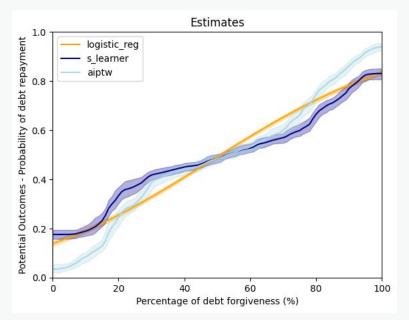


Estimation & Evaluation with Continuous Treatment

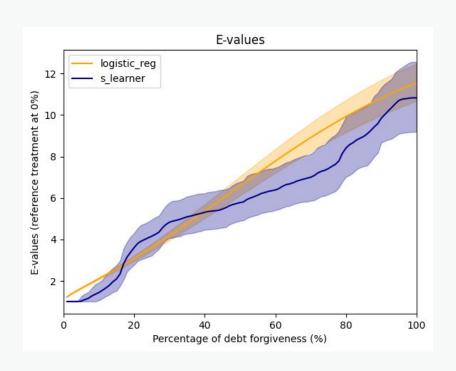
Placebo Treatment replacement

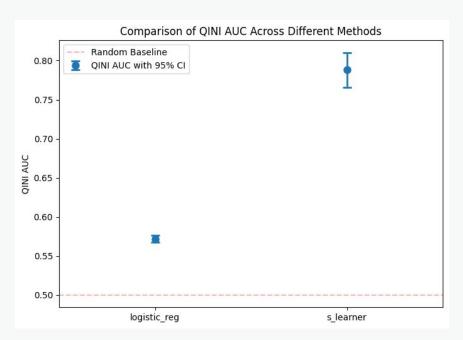


Random common causes



Estimation & Evaluation with Continuous Treatment



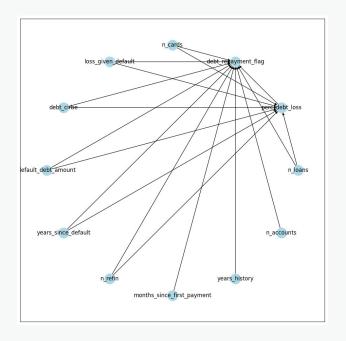


Ablation Study - Results

Table 1: Comparison of Variable Identification Performance

Method	Precision	Recall	Covariates	Runtime (min)
Baseline	0.05	1	169	>600
Dim. Reduction	0.53	1	15	3
Dim. Reduction & Identification	0.80	1	10	4

*Baseline: ensemble of causal discovery methods (PC, FCI and GES) over the 410 covariates dataset

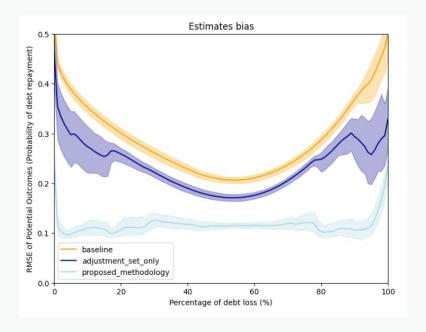


The proposed methodology improved precision from 0.05 to 0.80 compared to the baseline, yielding a set of 10 covariates, including all 8 true causal controls and 2 treatment-only related variables.

Ablation Study - Results

Table 2: Comparison of Estimation Bias Across Methodologies

Methodology	Mean Bias	95% Confidence Interval
Baseline	0.292	[0.279, 0.303]
Adjustment Set Only	0.236	[0.212, 0.257]
Proposed Methodology	0.117	[0.105, 0.131]



The proposed methodology achieves superior performance with B=0.117 vs B=0.292 (baseline) representing a 60% reduction in mean bias compared to the baseline.

^{*}Baseline: S-learner adjusting for the 169 controls found in the baseline identification phase

^{*}Adjustment Set Only: S-learner adjusting for the 10 controls found in the dimensionality reduction and identification phase

Conclusions & Takeaways

- 1. The proposed methodologies is better than standard causal ML pipelines at capturing the true controls, produces less biased estimates and archives a significant time reduction.
- 2. Many libraries and frameworks to address causal ML problems but gaps appear when applying it to concrete real use cases in industry
- 3. We propose:
 - Dimensionality reduction + Identification for challenge 1
 - Positivity violation diagnostics `remediation strategy for challenge 2
 - c. Continuous treatment adaptation for challenge 3
 - d. Pipeline for challenge 4
- Feedback is welcome!

GitHub repo!

BBVA

BBVA

Questions?

