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ABSTRACT
Promotional campaigns can grow a user base but often lead to over-

spending when not tailored to individuals. Using DoorDash data,

we show that causal modeling improves efficiency by identifying

users who are most responsive to deeper discounts and selecting

cost-effective offers. We further personalize discount amounts to

maximize incremental impact within a fixed promotional budget.

Offline and online tests demonstrate significant gains in user adop-

tion and cost efficiency.

CCS CONCEPTS
• Applied computing → Marketing; • Information systems
→ Online shopping; •Mathematics of computing→ Causal
networks; • Computing methodologies→ Causal reasoning
and diagnostics.
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1 INTRODUCTION
Promotional campaigns, whether percentage discounts (e.g., “X %

off orders over $ Y”) or perks such as free delivery, remain one of

the most powerful levers for accelerating growth in e-commerce.

By lowering transaction costs or adding perceived value, promo-

tions entice first-time buyers, nudge fence-sitters to convert, and

reactivate dormant consumers. The downside is cost: a blanket 30%

discount shown to millions of users can erode margins faster than
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it drives incremental orders. Although many platforms attempt to

mitigate this with simple business rules (“show a coupon only to

new users” or “cap the daily promo budget”), such heuristics do not

account for the large, user-specific variation in promo sensitivity

and therefore leave both revenue and consumer experience on the

table.

DoorDash uses promotions to encourage consumers to try new

services or order more frequently. Figure 1 illustrates an example of

a discount offered to DoorDash consumers. In practice, DoorDash

may run hundreds of active promotions every day.

We hypothesize that consumers exhibit varying degrees of sen-

sitivity or "appetite" for these promotions. By personalizing promo-

tional offers, both in terms of who receives them and how much to

offer, we can deliver a more satisfying consumer experience while

improving cost efficiency for the business. This motivates us to

use causal inference frameworks such as [8] and [9] , which aim to

estimate the true incremental effect of an intervention. Specifically,

we use causal machine learning to estimate the true incremental

effect of a given promotion on each user, and couple it with an opti-

mization layer that selects the best action under budget constraints.

A core innovation of our work is to provide guidance on when
to model promotions as discrete or continuous treatment variables,
and how to account for the budget constraints. We show that this

modeling choice depends on the campaign mechanics:

• When the treatment is a fixed-form offer (e.g., “free delivery”

or “30% off for X days”), the key decision is targeting: deter-

mining who should receive the promotion. In these cases, it

is appropriate to treat the treatment variable as discrete.

• When a campaign offers many tunable incentive levels (e.g.,

varying percent- or dollar-off) that meaningfully affect out-

comes, it is best to model the treatment as continuous. This

allows the model to capture price sensitivity and optimize

discount depth.

Our framework is validated across two real-world case studies:

one focusing on personalized targeting for fixed campaigns, and

the other on personalized discount depth. These examples illus-

trate how different problem formulations motivate different causal

learning strategies.

We summarize the key contributions of this paper as follows:

• Modeling Framework for Discrete vs. Continuous Treat-
mentsWe provide practical criteria and empirical evidence
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Figure 1: Example of a discount-based promotion shown to
DoorDash consumers.

to guide the choice of treatment formulation depending on

the structure of the promotion.

• Real-World Validation of Causal ModelsWe compare S-,
T-, and DML-learners offline and validate the selected model

in a large-scale online A/B test, showing measurable gains in

order rate and cost efficiency improvement.

• End-to-End OptimizationWe couple the causal estimates

with a cost-aware optimizer that assigns the best promotion

to each user, subject to global budget constraints.

• Operational Learnings We address implementation chal-

lenges such as repeated promo re-entry, campaign re-targeting,

and offline-to-online consistency, and demonstrate how the

system scales across campaigns and verticals.

2 METHODOLOGY
We divide our approach into two key stages: first, we estimate a

consumer’s response to a given promotion, and second, we use

these estimates to design promotions that maximize the desired

business outcome.

2.1 Causal response estimate
Our first objective is to estimate how promotions affect consumer

behavior, specifically each user’s incremental purchase probability.

Framing promotions as treatments, we apply a causal inference ap-

proach to estimate their effect on outcomes to reduce confounding

and isolate true impact.

2.1.1 Modeling Targets. In practice, modeling promotion effec-

tiveness is more complex than standard binary treatment setups.

Real-world promotions vary not only in whether they are shown

(binary), but also in type (e.g., order vs. delivery discount) and in-

tensity (e.g., 10%, 20%, 40% discounts). To accommodate this, we

classify modeling targets into two broad categories:

• Discrete (Binary / Multi-arm) Promotions. In this setup,

each user receives either no promotion or one of several mu-

tually exclusive promotional variants (e.g., no promo, 10% off,
non-monetary reward). This structure naturally lends itself

to binary or multi-class treatment modeling. Formally, each

user 𝑖 has a set of potential outcomes 𝑌𝑖 (𝑡) for treatment

𝑡 ∈ {0, 1, . . . , 𝐾}, where 𝑡 = 0 denotes no promotion and 𝑡 = 𝑘

indicates the 𝑘-th promotion variant. The vector 𝑥𝑖 denotes

the observed features for user 𝑖 . The Conditional Average

Treatment Effect (CATE) in the binary case is:

𝜏 (𝑥𝑖 ) = E [𝑌𝑖 (1) − 𝑌𝑖 (0) | 𝑥𝑖 ]

For multi-arm settings, we generalize this to arm-specific

CATE:

𝜏𝑘 (𝑥𝑖 ) = E [𝑌𝑖 (𝑘) − 𝑌𝑖 (0) | 𝑥𝑖 ] , 𝑘 = 1, . . . , 𝐾

• Continuous Promotions. Some campaigns define discount

levels as a continuous or ordinal variable (e.g., 0%, 10%, 20%,

30%). In these settings, the treatment variable 𝑇 is numeric

and represents varying depths of a single promotion type.

Although it is possible to model such treatments as discrete

categories, this approach discards the inherent structure of the

action space and ignores potential smoothness or monotonic-

ity across treatment levels. Instead, by modeling𝑇 as a contin-

uous variable, we can use regression-based uplift models or

estimate treatment-response curves 𝜏 (𝑡, 𝑥) that characterize
how the expected outcome evolves with treatment intensity:

𝜏 (𝑡, 𝑥𝑖 ) =
𝜕

𝜕𝑡
E [𝑌𝑖 | 𝑇 = 𝑡, 𝑥𝑖 ]

In practice, however, treatment effects of this general form

are not identifiable without further assumptions. To enable

tractable estimation, we often impose structure on 𝜏 (𝑡, 𝑥),
for instance, by assuming linearity in 𝑡 by defining 𝜏 (𝑡, 𝑥) =
𝜏 (𝑥)𝑡 . Such assumptions make it feasible to apply frameworks

like Double Machine Learning. Beyond linear specifications,

recent work has introduced more flexible approaches. For

example, Zhang et al. [12] use Radial Basis Functions (RBFs)

to encode the action space, enabling smoother generalization

across discount levels while preserving model interpretability.

In our work, we support both setups. We treat discrete variants

with multi-arm treatment learners and use ordinal encodings or

bin-wise uplift models to approximate continuous treatment effects.

2.1.2 Causal Estimation Methods. To estimate 𝜏𝑘 (𝑥) or 𝜏 (𝑡, 𝑥), we
evaluated several general causal inference approaches. These meth-

ods follow the frameworks introduced by Künzel et al. [6] and

Chernozhukov et al. [4]. Each method is trained on internal promo-

tion logs and benchmarked based on uplift evaluation metrics.

S-Learner. A single model 𝑓S (𝑋,𝑇 ) is trained on pooled data. The

treatment indicator𝑇 is passed as an input feature. Individual

uplift is computed as:

𝜏 (𝑋 ) = 𝑓S (𝑋, 1) − 𝑓S (𝑋, 0)

T-Learner. Two separate models are trained—𝑓1 (𝑋 ) on treated

users and 𝑓0 (𝑋 ) on controls. The treatment effect is estimated

as:

𝜏 (𝑋 ) = 𝑓1 (𝑋 ) − 𝑓0 (𝑋 )
Double Machine Learning (DML). A two-stage approach that

controls for confounding by residualizing both outcome and

treatment:

𝜇𝑦 (𝑋 ) ≈ E[𝑌 | 𝑋 ], 𝜇𝑡 (𝑋 ) ≈ P(𝑇 = 1 | 𝑋 )

𝑌 = 𝑌 − 𝜇𝑦 (𝑋 ), 𝑇 = 𝑇 − 𝜇𝑡 (𝑋 )

𝜏 (𝑋 ) = Regress 𝑌 on 𝑇
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DML generalizes to both binary and multi-arm treatments

and is particularly robust under non-randomized exposure.

2.2 Promotion Optimization
Once we estimate the user-level uplift for each promotion arm,

we aim to assign the optimal promotion to each user in order to

maximize total incremental adoption while accounting for the cost

of delivery and business constraints such as budget or eligibility.

2.2.1 Optimization Objective. We define a reward function that

combines uplift and cost:

Reward(𝑖, 𝑘) = 𝜏𝑘 (𝑥𝑖 ) − 𝜆 · 𝑐𝑘
where:

𝑥𝑖 : Feature vector for user 𝑖

𝜏𝑘 (𝑥𝑖 ) : Estimated uplift for user 𝑖 under promotion 𝑘

𝑐𝑘 : Expected cost of applying promotion 𝑘

𝜆 : Trade-off parameter between uplift and cost

We then select the optimal promotion using:

𝜋∗ (𝑥𝑖 ) = argmax

𝑘∈K
Reward(𝑖, 𝑘)

where K includes all available promotion arms, including 𝑘 = 0 for

no promotion.

2.2.2 Constraints and Deployment Strategy. In production, the op-

timization must satisfy several constraints, including a global

budget constraint (∑𝑖 𝑐𝜋 (𝑖 ) ≤ B), qota limits on certain pro-

motion arms, and eligibility rules that restrict offers to specific

users, geographies, or merchant categories.

2.2.3 Continuous Discount Handling. When discount levels vary

continuously (e.g., 10%, 20%, 30%), we treat promotion depth as a

real-valued variable 𝑡 and optimize:

𝑡∗𝑖 = arg max

𝑡 ∈[𝑡min,𝑡max ]
[𝜏 (𝑡, 𝑥𝑖 ) − 𝜆 · 𝑐 (𝑡)]

where 𝜏 (𝑡, 𝑥𝑖 ) is the estimated uplift and 𝑐 (𝑡) the expected cost.

When 𝑡 takes a few discrete values with distinct effects, the problem

can be transformed to a discrete treatment case.

2.2.4 Final Policy Deployment. The final policy 𝜋 (𝑥𝑖 ) is calculated
offline and applied offline in real time, subject to budget and other

constraints. It is periodically updated as new data or goals emerge.

The details of how we solve the constrained optimization prob-

lems are presented in Sections 3.1 and 3.2. In general, our solution

draws inspiration from budget-aware optimization frameworks de-

veloped in the context of e-Commerce and advertising. For example,

Tang and Wang [10] propose algorithms to maximize promotional

return under budget constraints using marginal ROI ranking, while

Bottou et al. [3] frame ad assignment as a counterfactual policy

optimization problem using offline data.

3 EMPIRICAL STUDY
Uplift modeling techniques in marketing have a long history, with

the early work of Lo [7] proposing the true lift model as an alter-

native to traditional response modeling for campaign targeting.

In this section, we demonstrate how our causal modeling frame-

work is applied in real-world marketing scenarios at DoorDash. We

present two case studies that reflect common promotion challenges:

(1) promotion (re)engagement for non-restaurant trial promotions,

and (2) personalized discount depth for restaurant consumers. Each

case illustrates how we select modeling targets, estimate uplift

using causal learners, and optimize promotions under real-world

constraints. We evaluated both offline metrics (e.g., Qini score, up-

lift@k) and online A/B tests to validate the end-to-end effectiveness

of our approach.

3.1 Personalized Discount Targeting for
Non-Restaurant Delivery

To grow the user base and improve retention, we launched a set

of (re)engagement promotions to encourage consumers to try non-

restaurant deliveries at DoorDash (e.g., grocery, household items,

or personal care) by offering relevant promotions shortly after

their restaurant order. Historically, we tested several predefined

strategies:

• Cross-vertical promo — a fixed percent-off incentive usable

across all Non-restaurant categories

• Vertical-specific promo — the same discount structure, but

restricted to certain verticals such as grocery or retail

• Delivery fee discount — waived delivery fees for eligible

non-restaurant orders

All offers could be single- or multi-use (subject to redemption

limits) and were valid within a restricted time window. These cam-

paigns aim to determine whether encouraging exploration of other

non-restaurant use cases drives stronger incremental adoption and

higher order frequency. Crucially, the promotion content and incen-

tive levels were defined in advance; our task was to identify which

users should receive each promotion. Thus, the core modeling chal-

lenge was one of targeting—deciding who should be exposed to

each pre-specified offer—not one of optimizing promotion type or

amount.

3.1.1 Causal Modeling Targets. We frame this as a treatment ef-

fect estimation problem under a fixed promotion policy. For each

promotion variant, we model the incremental effect of showing

the offer versus withholding it. Although the campaign included

multiple discount tiers (e.g., varying across consumer segments),

we observed that:

(i) Adoption rates were broadly similar across different discount

levels in historical data

(ii) The available data was too sparse to support fine-grained

modeling

As a result, we consolidate offers into two broad categories, dollar
off and no delivery fee—and model each as a discrete treatment

arm. This simplifies the task to estimating a multi-arm Conditional

Average Treatment Effect (CATE) per user:

𝜏𝑘 (𝑥) = E[𝑌𝑖 (𝑘) − 𝑌𝑖 (0) | 𝑥𝑖 ], 𝑘 ∈ {dollar off, no delivery fee}

3.1.2 Causal Modeling Approach. As discussed in Section 3.1.2,

we evaluated several causal learners, including the S-Learner, T-

Learner, and Double Machine Learning (DML). For the T-Learner,

we tested both the standard variant and a Category Transformer
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User Context Re-entry

Promotion Order

Figure 2: Campaign Model Causal Diagram

adaptation, as detailed in Section 3.1.4. The final model was trained

on historical campaign logs and configured to estimate multi-arm

treatment effects.

3.1.3 Training Data and Segmentation Strategy. We train our mod-

els on internal impression-level logs, where each record captures a

user’s exposure to a specific promotion. Campaigns are typically

launched uniformly to eligible users, with a small randomized hold-

out group as control. The data includes features on user behavior,

order history, vertical engagement, and promo response. We find

that model performance is highly sensitive to how training data is

constructed, particularly by user lifecycle stage segmentation and

exposure history treatments.

Segmented Training by Consumer Type. To encourage generaliza-
tion, we initially pool data across many historical category-level

campaigns. However, we find that indiscriminately combining users

across different lifecycle stages (e.g., new vs. existing) can degrade

out-of-sample uplift prediction, even when stage indicators are

included. Behaviorally heterogeneous data often introduces con-

founding that overwhelms model capacity. Instead, we segment

training by consumer type such as new users, based on order recency
and frequency. Models trained on more homogeneous cohorts yield

more accurate treatment effect estimates and more stable uplift

rankings.

Handling Re-entry Events. Repeated exposures pose another mod-

eling challenge: users may re-enter the same campaign after a

cooldown period (e.g., 28 days), creating correlated impressions

that bias estimated effects. We evaluate three strategies:

• First-exposure only: Retain only first impression per user

campaign, assuming the first touch has the strongest effect.

• Per-entry exposure: Treat each exposure as a separate sam-

ple, and include re-entry context features (e.g., number of

prior exposures).

• Sequential modeling: Treat reentries as a multi-step process

using sequence models or reinforcement learning.

For this promotion campaign, we adopt the per-entry strategy

to retain more training data while accounting for re-entry dynamics

through derived features.

The final causal model structure is visualized in the causal dia-

gram (figure 2).

Table 1: Offline Model Performance (Qini, uplift@30)

Model OutSample InSample
Qini Uplift@30 Qini Uplift@30

S-Learner 0.49% 0.77% 31.81% 1.91%

T-Learner 0.09% 0.12% 1.13% 0.18%

Cat Transformer 1.18% 0.19% 8.31% 0.62%

DML 8.03% 1.11% 13.73% 0.77%

3.1.4 Causal Model Offline Result. We evaluated four causal mod-

eling approaches using historical campaign data, measuring both in-

sample and out-of-sample performance via k-fold cross-validation.

Table 1 reports results across two key metrics: Qini Score, which

assesses uplift ranking versus random targeting, and Uplift@30,

which captures incremental gain in the top 30% of scored users.

Double Machine Learning (DML) achieved the strongest out-of-

sample results, with a Qini score of 8.03% and Uplift@30 of 1.11%,

outperforming all baselines. The S-Learner exhibited strong in-

sample metrics but failed to generalize, indicating overfitting. The

T-Learner underperformed consistently. We also tested a Category

Transformer adapted from our production ranker. While it achieved

high in-sample Qini (8.31%), its generalization lagged behind DML,

suggesting campaign-specific overfitting.

Given its balance of accuracy and robustness, we adopt DML as

our default uplift modeling approach in production.

3.1.5 Promotion Strategy and Online Evaluation. We evaluate the

model within a live promotion campaign. The current setup uses

uniform targeting, with a single promotion type available per con-

sumer segment. To introduce personalization, we adopt a top per-

centile targeting strategy: we identify the optimal uplift threshold

using out-of-sample validation data and apply this cutoff in the

online experiment. The full procedure is detailed in Algorithm 1.

Algorithm 1 Uplift-Based Percentile Targeting

Require: Estimated uplifts 𝜏𝑘 (𝑥𝑖 ) for all users 𝑖 and promotions

𝑘 ; validation set with observed outcomes

1: for all users 𝑖 do
2: Set reward: 𝑟𝑖 = 𝜏 (𝑥𝑖 )
3: end for
4: Sort users by 𝑟𝑖 descending

5: for all thresholds 𝑃 ∈ {0.01, . . . , 1.0} do
6: Compute total observed uplift 𝐺𝑃 on top-𝑃 validation users

7: end for
8: Let 𝑃∗ = argmax𝑃 𝐺𝑃

9: for all users 𝑖 in deployment set do
10: if rank(𝑖) ≤ 𝑃∗ then
11: Assign top-scoring promotion 𝑘∗ (𝑥𝑖 )
12: else
13: Assign no promotion

14: end if
15: end for

We evaluate the system via an online A/B test comparing a con-
trol group, which receives uniform promotions, to a treatment
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group, which receives targeted promotions only if their predicted

uplift exceeds a percentile threshold. Assigned offers are optimized

per user. Performance is measured by overall order lift and cost
efficiency (cost index).

Table 2: Online A/B test results: personalized vs. uniform
targeting

Group Order Rate Lift Cost Index

Control – no discount – –

Treatment – uniform targeting 2.43% 100

Treatment – causal targeting 2.44% 55

While both strategies achieved similar topline lift, the personal-

ized approach reduced cost per incremental order by nearly half.

This underscores the value of causal targeting: even when the pro-

motion itself is fixed, choosing who to show it to can substantially

improve efficiency.

3.1.6 Discussion. While this case demonstrates that improved tar-

geting can significantly reduce cost with minimal impact on order

rate lift, the broader marketing literature suggests that such benefits

are not universal. In some contexts, targeting can backfire due to

adverse consumer reactions. For instance, Goldfarb and Tucker [5]

find that highly targeted but intrusive ads may reduce effectiveness,

while Ascarza [1] shows that targeting high-risk customers for

retention may be inefficient when those customers are unlikely to

respond. These examples highlight that the effectiveness of target-

ing depends not only on predictive accuracy, but also on consumer

perception and behavioral heterogeneity.

3.2 Case Study: Discount Depth Optimization
for Restaurant Consumers

3.2.1 Context. Building on the previous case of fixed-form promo-

tion targeting, we now address a more granular problem: optimizing

the discount depth (e.g., 0%, 10%, 20%, 30%) for each consumer, where

0% represents no discount. This formulation generalizes targeting

as it subsumes the decision of whether to offer a promotion. Unlike

discrete treatment modeling, we treat the discount as a continu-

ous variable and aim to personalize it to maximize a cost-adjusted

reward function (Section 2.2.1).

3.2.2 Data. We use a one-month holdout dataset that includes

both control and treated groups:

• Control group: Consumers who did not receive any discount.

• Treated group: Consumers exposed to varying discount levels.

Feature engineering mirrors Case 1 (Section 3.1) and includes

prior order volume, vertical mix, promo redemption history, and

merchant engagement. Each row is labeled with a binary outcome

indicating whether the user placed an order following exposure.

Handling the Treatment Variable. There are two key complica-

tions associated with the treatment variable that motivate us to

model it as a continuous rather than a discrete variable.
First, the observed treatment (discount) may vary across impres-

sions and is not always recorded with full fidelity. For instance,

the intended discount level is denoted by 𝑇 ; however, due to con-

straints such as discount caps or eligibility rules (which may vary

by merchant or consumer), the actual discount experienced by the

user, 𝑇 , may differ from 𝑇—that is, 𝑇 ≠ 𝑇 . This introduces a form

of treatment non-compliance, where the assigned offer differs

from the offer actually received. Such mismatches can bias causal

effect estimation, particularly when the deviation is systematically

related to user or merchant features. To mitigate this, we log the ef-

fective treatment𝑇 for each impression and apply Double Machine

Learning (DML) to obtain debiased estimates (see later sections for

details).

Second, the support of the treatment variable in the training

data differs from that of the actual policy. For example, historical

promotions may have offered only discrete values such as $2 or

$4 off, while the production policy aims to select from a broader,

finer-grained range, for instance, $0.50 to $5.00 in $0.50 increments.

Modeling the discount level as a continuous variable allows gen-

eralization beyond discrete training values and supports smooth

interpolation across the action space.

3.2.3 Modeling Approach. In this setting, the treatment variable

is a scalar: the offered discount amount 𝑡 ∈ [0, 𝑡max]. Rather than
comparing between discrete arms, we aim to estimate a user-level

treatment response function:

𝜏 (𝑡, 𝑥) = E[𝑌 | 𝑇 = 𝑡, 𝑋 = 𝑥] − E[𝑌 | 𝑇 = 0, 𝑋 = 𝑥]
To simplify estimation, we assume that 𝜏 (𝑡, 𝑥) is linear in 𝑡 : i.e.,

𝜏 (𝑡, 𝑥) = 𝜏 (𝑥) · 𝑡 . This linearity assumption is empirically sup-

ported based on our data: when plotting average treatment effects

across discount depths, the relationship appears approximately lin-

ear within the action space. Note that Zhang et al. (2024) used a

different approach to encode continuous treatments without assum-

ing linearity, by applying radial basis function (RBF) embeddings

over discount depth to enable smooth generalization across similar

actions while preserving non-linear relationships [11].

To address the non-random nature of treatment assignment, we

apply Double Machine Learning (DML):

• Fit a treatment model 𝜇𝑡 (𝑥) to predict the discount level 𝑇

assigned to each user 𝑥 .

• Fit an outcome model 𝜇𝑦 (𝑥) to predict the adoption probability

𝑌 .

• Compute residuals: 𝑇 = 𝑇 − 𝜇𝑡 (𝑥) and 𝑌 = 𝑌 − 𝜇𝑦 (𝑥).
• Estimate the partial effect of 𝑇 on 𝑌 via regression, yielding a

debiased estimate of 𝜕𝑌/𝜕𝑇 .
This approach allows us to estimate user-specific marginal re-

sponse curves and infer the optimal discount 𝑡∗
𝑖
for each user.

3.2.4 Constrained Optimization. We frame the final assignment as

a constrained optimization problem. For each user 𝑖 , the goal is to

choose the optimal discount 𝑡 to maximize:

Reward(𝑖, 𝑡) = 𝜏 (𝑥𝑖 ) · 𝑡 − 𝜆 · 𝑐𝑖 (𝑡)
subject to the global budget constraint:∑︁

𝑖

𝑐𝑖 (𝑡) ≤ B

While this problem is tractable offline (when the full user popu-

lation is known in advance), it is less practical in online settings,
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where user traffic and budget evolve in real time. Moreover, the

budget B is often a soft rather than hard constraint. In practice,

we care more about maintaining the cost-to-reward ratio below a

predefined efficiency threshold.

To this end, we reformulate the constraint as:∑
𝑖 𝑐𝑖 (𝑡)∑

𝑖 Reward(𝑖, 𝑡)
≤ 𝜃

where 𝜃 is a predetermined threshold reflecting acceptable cost

efficiency.

At optimality, the marginal cost-to-reward ratio should be equal-

ized across all users receiving a promotion. This yields an imple-

mentable rule for assignment:

𝑡∗𝑖 = max

{
𝑡 ≤ 𝑡max :

𝑐𝑖 (𝑡)
Reward(𝑖, 𝑡) ≤ 𝜃

}
3.2.5 Evaluation. We evaluate the impact of our personalized dis-

count assignment via a long-term online A/B test. In this experi-

ment, one of the treatment groups received varying levels of dis-

counts, and the other a fixed amount (as the baseline), while the

control group received no discount.

Table 3 summarizes the key results. The personalized strategy

achieved s higher order rate lift while significantly reducing overall

cost by more than 70%.

Table 3: Online A/B test results: personalized vs. uniform
discount amount

Group Order Rate Lift Cost Index

Control – no discount – –

Baseline – uniform amount 2.21% 100

Treatment – optimized amount 2.56% 28

3.2.6 Discussion. This case illustrates the need for robust modeling

when personalization extends beyond binary treatment design. By

treating discount depth as a continuous policy variable, we enable

fine-grained optimization while accounting for endogenous treat-

ment assignment. Though more complex than multi-arm setups,

this method generalizes naturally to pricing, subsidy, or incentive

calibration problems at scale.

4 CONCLUSION
We present a causal machine learning framework for optimizing

promotions in large-scale, multi-vertical marketplaces. By com-

bining double-debiased treatment effect estimation (DML) with

cost-aware optimization, we enable personalized assignment of

both promotion type and incentive depth, balancing impact with

budget efficiency.

A core contribution of this work is to clarify when promo-

tions should be modeled as discrete versus continuous treatments.

Through two case studies, we show that the appropriate modeling

choice depends on campaign structure: for fixed-form promotions

where the offer is predefined (especially when the discount range is

narrow or does not meaningfully affect outcome metrics), targeting

decisions are best handled with discrete treatment models; for tun-

able incentives such as percent-off or fee reductions, a continuous

treatment framework enables more precise optimization based on

price sensitivity.

Online A/B tests confirm that personalized promotion achieves

comparable order lift at significantly lower cost than uniform assign-

ment, validating the modeling approach and its real-world utility.

Beyond model performance, we address real-world deployment

challenges, including re-exposure effects, eligibility filtering, and

budget constraints, which are critical to realizing uplift gains at

scale.

Looking ahead, we see several opportunities to extend this work,

particularly in the direction of sequential decision-making for life-

cycle promotions, adaptive experimentation pipelines, and inte-

gration with reinforcement learning. Our framework also aligns

closely with recent advances in contextual bandits and online pol-

icy optimization under budget constraints. For example, Bastani

and Bayati [2] develop algorithms for high-dimensional decision-

making with theoretical guarantees on regret, while Zhou et al. [13]

propose a budget-aware contextual bandit approach for personal-

ized discounting in e-commerce. These threads suggest promising

directions for scaling causal personalization to more dynamic and

constrained environments. We hope this work contributes to the

growing literature on causal inference for promotion systems and

inspires further research into scalable, cost-effective personalization

strategies.
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