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Abstract
Automated decision-making algorithms drive applications in do-
mains such as recommendation systems and search engines. These
algorithms often rely on o�-policy contextual bandits or o�-policy
learning (OPL). Conventionally, OPL selects actions that maximize
the expected reward within an existing action set. However, in
many real-world scenarios, actions—such as news articles or video
content—change continuously, and the action space evolves over
time compared to when the logged data was collected. We de�ne
actions introduced after deploying the logging policy as new ac-
tions and focus on the problem of OPL with new actions. Existing
OPL methods cannot learn and select new actions because no rele-
vant data are logged. To address this limitation, we propose a new
OPL method that leverages action features. In particular, we �rst
introduce the Local Combination PseudoInverse (LCPI) estimator
for the policy gradient, generalizing the PseudoInverse estimator
initially proposed for o�-policy evaluation of slate bandits. LCPI
controls the trade-o� between reward-modeling condition and the
condition for data collection regarding the action features, captur-
ing the interaction e�ects among di�erent dimensions of action
features. Furthermore, we propose a generalized algorithm called
Policy Optimization for E�ective New Actions (PONA), which
integrates LCPI, a component specialized for new action selection,
with Doubly Robust (DR), which excels at learning within existing
actions. We de�ne PONA as a weighted sum of the LCPI and DR
estimators, optimizing both the selection of existing and new ac-
tions, and allowing the proportion of new action selections to be
adjusted by controlling the weight parameter.
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1 Introduction
We increasingly rely on data-driven algorithms to optimize decision-
makings in various domains, including recommendation systems [6,
8, 22, 23, 27], search engines [15], advertising [2], and medical
treatments [11]. These problems take the form of contextual bandits,
where a policy selects actions based on observed contexts, and the
corresponding rewards become available. The goal in such problems
is to learn a policy that maximizes the expected reward. O�-Policy
Learning (OPL) [17, 21, 32, 35] enables learning such policies by
leveraging previously collected data, eliminating the need for online
deployment and avoiding the risk of negatively impacting user
experiences through active exploration [14, 23]. Typically, OPL
focuses on identifying the best actions within a prede�ned set
of existing actions. However, in many real-world scenarios, the
action space evolves over time as new actions emerge or existing
ones are updated. For example, search systems must process new
articles daily, and recommendation systems for products or videos
continually welcome new items.We de�ne these actions, introduced
after the data collection phase, as new actions. In this work, we
rigorously address the challenges of OPL regarding the presence of
such new actions for the �rst time in the relevant literature.

Existing OPLmethods such as policy-based and regression-based
approaches are e�ective at identifying optimal actions within the
set of existing ones [23, 28]. However, the naive applications of
existing methods cannot choose new actions at all, failing to give
fair opportunities to them. To address this critical limitations of the
typical OPL methods, we consider and formulate a scenario where
actions are represented as multi-dimensional action features. There
exist many real-life problems where the actions are represented
with features [6, 24]. For example, in the problem of thumbnail
optimization (Figure 1) like done at Net�ix [1], actions correspond
to thumbnails described by features such as character type (e.g.,
male, female, child), title position (e.g., top, middle, bottom), and
title size (e.g., large, small). In particular, the left side of the �gure
depicts existing thumbnails in the prede�ned action set, while the
right side illustrates new thumbnails that are not at all observed in
the logged data. As in this illustration, we consider leveraging the
action features to develop a newOPLmethod that e�ectively selects
new actions (i.e., unobserved combinations of action features) while
still achieving a competitive overall policy performance.

Merely applying existing regression-based or policy-based ap-
proaches to observable action features does not resolve the problem
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Figure 1: Examples of Existing and New Actions.
Note: There are three types of action features: character type
(chosen as two from male, female, or child), title position (top,
center, or bottom), and title size (large or small). The left side of
the �gure illustrates the thumbnails for existing actions, while the
right side shows examples of new actions: "Male and female, title
position at the bottom, large title" (new action 1) and "Male and
child, title position at the center, small title" (new action 2).

of new actions. This is because the combinations of action features
that represent new actions are never observed in the logged data. A
possible solution might be to draw inspiration from the PseudoIn-
verse (PI) method introduced in the slate bandit setting [12, 35, 37].
Slate bandits refer to the setting where a policy aims to optimize the
selection of slates, which consist of multiple action features (which
are also called sub-actions) [35]. To deal with the combinatorial
slate spaces and resulting variance issues, the PI estimator relies on
two conditions [35, 37]: (1) the logging policy provides full support
for each action feature independently, and (2) the expected reward
function (q-function) is a linear combination of the intrinsic value
of each feature dimension. Under these conditions, the PI estimator
can estimate the policy value or policy gradient without bias even
if there are new actions. However, the linearity condition is par-
ticularly restrictive because it treats the e�ects of action features
as completely independent, ignoring potentially signi�cant inter-
action e�ects and thus introducing bias into the estimation [12].
Therefore, we relax the linearity condition of PI to deal with local
interactions among action features and propose Local Combina-
torial Feature Interaction (LCPI)—a generalized version of the
PI estimator. LCPI enables new policies to account for interactions
among di�erent dimensions of action features, allowing a more
e�ective selection of new actions. Although LCPI is better at iden-
tifying e�ective new actions, existing OPL methods, such as the
policy-based approach using DR to estimate the policy gradient [4],
can be more e�ective for learning within existing actions. This
is because they do not rely on any conditions about the form of
the q-function. To leverage the strengths of both approaches, we
�nally introduce a hybrid algorithm named Policy Optimization
for E�ective New Actions (PONA), which integrates LCPI and DR
by weighting them through a weight parameter. This design allows
PONA to optimize the overall policy performance via the e�ec-
tive selection of existing actions while identifying promising new
actions. Furthermore, by adjusting the weight parameter, PONA
can control how aggressively it selects new actions, supporting
both conservative (greater focus on existing actions) and aggressive
(greater focus on new actions) strategies. Results on synthetic and
real-world experiments demonstrate that PONA e�ciently selects
new actions and achieves satisfactory overall performance, whereas
existing methods fail to choose new actions severely.

2 Preliminaries: Conventional OPL
This section formulates the typical problem of OPL without new
actions and introduces existing OPL methods.

First, let G 2 X ✓ R3G represent a context vector such as user
features in recommender systems. Given a context G , a possibly
stochastic policy c (0 |G) selects an action 0 2 A such as products or
movies. Furthermore, let A 2 R�0 denote a reward, such as conver-
sion label and play duration, drawn from an unknown conditional
distribution ? (A |G,0). In the setting of OPL, we are provided with
a logged dataset D := {(G8 ,08 , A8 )}=8=1 collected under a logging
policy c0 such that (G,0, A ) ⇠ ? (G)c0 (0 |G)? (A |G,0).

We de�ne the expected reward under the deployment of a policy
c (policy value) as a measure of its overall performance:

+ (c) := E? (G )c (0 |G )? (A |G,0) [A ] = E? (G )c (0 |G ) [@(G,0)],
where @(G,0) := E[A |G,0] is the expected reward function or q-
function for a given context G and action 0.

The goal in OPL is to learn a new policy c\ , parameterized by
\ , using only the logged dataset D. When learning a policy, we
aim to maximize the policy value as \⇤ = argmax\ 2⇥+ (c\ ) . The
following describes two typical approaches to OPL.

Firstly, the policy-based approach updates the policy parameter
\ using iterative gradient ascent, \C+1  \C + [r\+ (c\ ), where

r\+ (c\ ) := E? (G )

" ’
02A

c\ (0 |G)@(G,0)r\ logc\ (0 |G)
#
, (1)

is the policy gradient (PG). Since the true PG is unknown, we need
to estimate it using the logged data D. A common approach for
this estimation is to use the IPS method [19]:

r\b+IPS (c\ ;D) := 1
=

=’
8=1

c\ (08 |G8 )
c0 (08 |G8 )

A8r\ logc\ (08 |G8 ) . (2)

where c\ (0 |G)/c0 (0 |G) is called the importance weight. It plays a
key role in ensuring the unbiasedness of IPS but often causes the
issue of high variance and ine�cient policy learning [28].

An improved approach to estimate the PG is using the DR esti-
mator [4]. It leverages a q-function estimator @̂(G,0) to reduce the
variance in the PG estimation compared to IPS as

r\b+DR (c\ ;D) := 1
=

=’
8=1

c\ (08 |G8 )
c0 (08 |G8 )

(A8 � @̂(G8 ,08 )) r\ logc\ (08 |G8 )

+ 1
=

=’
8=1

’
02A

c\ (0 |G8 )@̂(G8 ,0)r\ logc\ (0 |G8 ) .

(3)

IPS and DR are both unbiased against the true PG under the full sup-
port condition (a condition to ensure su�cient data collection
by the logging policy c0).

Condition 2.1. (Full Support) The logging policy c0 is said to have
full support if c0 (0 |G) > 0,8G 2 X,80 2 A .

Secondly, the regression-based approach estimates the q-function
@(G,0) using o�-the-shelf supervised machine learning methods. It
then transforms the estimated q-function @̂\ (G,0) into a decision-
making policy, for example, by applying the softmax function. This
approach may fail due to bias issues resulting from the di�culty in
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accurately estimating the q-function @(G,0). However, it can avoid
the issue of high variance compared to the policy-based approach
based on IPS and DR [9].

Existing policy-based or regression-based methods perform ef-
fectively in identifying existing actions with high expected re-
wards [17, 28, 32]. However, these methods cannot learn to select
new actions, even if some of the new actions have high expected
rewards. This is because we do not observe any data about new
actions in D, which severely violates full support (Condition 2.1).
Therefore, we need to �rst relax the typical condition of full support
to e�ectively learn policies that can choose promising new actions.

3 The Proposed Approach
The previous sections discussed the challenges associated with
selecting new actions using existing OPL methods. To overcome,
we propose a solution that leverages action features, which are
often available in real-world decision-making problems [6, 18, 24].

3.1 Formulation of OPL with Action Features
We now represent action 0 by the 3-dimensional action features
5 (0) = (51 (0), . . . , 5; (0), . . . , 53 (0)), where 5; (0) 2 F; denotes the
;-th dimension. In particular, we consider the setting where each
action feature 5; (0) is discrete and can be represented as a one-
hot vector. For example, the genre feature such as ‘documentary’,
‘romance’, and ‘horror’ are encoded as [1, 0, 0], [0, 1, 0], and [0, 0, 1].

In OPLwith action features, we can possibly address the presence
of new actions by being able to represent them as combinations
of already observed factors. Figure 1 illustrates an example in the
context of thumbnail selection with the 3-dimensional action fea-
tures. The left side of the �gure shows the existing action set, which
includes thumbnails already considered by the logging policy. The
right side introduces new thumbnails as new actions. For example,
new action 1 consists of "male and female characters," "title po-
sitioned at the bottom," and "large title size." We can see that we
have already observed every individual feature of new action 1
separately in the existing action set. Despite this, existing OPL
methods struggle to handle these new actions because the
logged data does not include speci�c combinations of action
features representing the new actions. Therefore, we propose
a novel method and algorithm that leverage these action features
through a new estimator for the PG to identify e�ective new actions.

Before introducing our proposed approach, we rigorously intro-
duce three key types of action spaces.

(1) The space of all actions: The set of all possible combina-
tions of action features:

A := {0 | 0 = (51, . . . , 53 ), 851 2 F1, . . . ,853 2 F3 }.
(2) The space of existing actions: The set of actions that have

some positive probability under the logging policy:

A4G8BC8=6 := {0 2 A | 9G 2 X, c0 (0 |G) > 0}.
(3) The space of new actions: The set of actions that are not

at all chosen under the logging policy:

A=4F := {0 2 A | 8G 2 X, c0 (0 |G) = 0}.
These action spaces satisfy the following relations:

A4G8BC8=6 \A=4F = ;, A4G8BC8=6 [A=4F = A .

In the typical formulation for OPL, the objective is to identify
actions that maximize the expected reward from a set of existing
actions A4G8BC8=6 . In contrast, we consider a more general and
realistic scenario, where the goal is to select actions that maximize
the expected reward from A, which includes new actions A=4F .

3.2 The Proposed Algorithm: PONA
To design a new algorithm for OPL with new actions, we �rst draw
inspiration from the PI estimator initially proposed for OPE in slate
bandits [35], and provide a generalization.

To introduce PI, we begin with formally de�ning an one-hot
vector for each action feature as I5; (0) 2 R3< . This is a �attened
vector that represents the one-hot encoding of each action feature.
Using this notation, we can �rst extend the PI estimator [35] as an
estimator for the PG as follows.

r\b+PI (c\ ;D)

=
1
=

=’
8=1

 ’
02A

c\ (0 |G8 )r\ logc\ (0 |G8 )I5; (0)
)

!
�†c0,G8 I5; (08 )A8 , (4)

where �c0,G := Ec0 (0 |G ) [I5; (0) I)5; (0) |G], and"
† denotes the Moore-

Penrose pseudoinverse of the matrix" .
The PI estimator introduced above relies on the following condi-

tions (3.1 and 3.2) to ensure unbiased estimation of the PG:

Condition 3.1. (Independent Support) The logging policy c0 ensures
independent support if c0 (5; |G) > 0,8G 2 X,8; 2 [1, ...,3],85; 2
F; . Note that c0 (5; |G) =

Õ
02A:5; (0)=5; c0 (0 | G) is the marginal

probability of observing 5; under c0.

This condition requires the logging policy to independently
support every dimension of the action features. The condition of
Independent Support is weaker than the Full Support condition
(Condition 2.1), which requires the logging policy to choose every
combination of action features. When new actions exist, the Full
Support condition cannot hold, but the Independent Support con-
dition may still hold even in the presence of new actions. Due to
this relaxation of the support condition, the PI estimator can
learn a new policy that chooses new actions.

The next condition of PI is with regard to the q-function.

Condition 3.2. (Linearity) For each context G 2 X, there exists an
(unknown) intrinsic reward vector qG,; 2 R3< such that:

@(G,0) =
3’
;=1

@; (G, 5; (0)) = I)5; (0)qG,; .

The linearity condition requires that the q-function be expressed
as a linear combination of latent value functions for each dimen-
sion of the feature. This condition essentially assumes no in-
teraction e�ects between di�erent dimensions of the action
feature. While extending the PI estimator to estimate the PG is
straightforward as done in Eq. (4), the linearity condition rarely
holds and introduces signi�cant bias in PG estimation [12, 37].

To overcome this critical limitation of the naive extension of
PI, we �rst generalize Independent Support to account for local
interactions of action features as follows.
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Condition 3.3. (Local Combination Support) The logging policy
c0 is said to ensure local combination support if, for the the �rst B
dimensions of the action features, c0 (51:B |G) > 0,8G 2 X,851:B 2ŒB

9=1 F9 as well as c0 (5; |G) > 0 for the rest B + 1  ;  3 .

Note that 51:B = (51, ..., 5B ) represents the �rst B dimensions of
the action features, where 1  B  3 . The condition of Local
Combination Support requires 51:B to be fully supported under the
logging policy.1 Condition 3.3 remains weaker than the original
Full Support condition (Condition 2.1), because Full Support re-
quires every dimension of the action features to be simultaneously
supported (equivalent to Local Combination Support with B = 3).
When B = 1, Local Combination Support reduces to Condition 3.1.
Along with this extension, we generalize the linearity condition for
the q-function (Condition 3.2) as described below.

Condition 3.4. (Local Linearity) De�ne a vector with binary val-
ues for representing the �rst B dimensions of the action features
as I51:B 2 R<

B
. The overall action indicator I0 is then de�ned as

I0 := concat[I5; , I51:B ]. We say that the q-function meets Local Lin-
earity, if for each context G 2 X, there exists an (unknown) intrinsic
reward vector qG = concat[qG,; 2 R3<,qG,1:B 2 R<

B ] such that:

@(G,0) =
3’
;=1

@; (G, 5; (0)) + @(G, 51:B (0))

|                                 {z                                 }
I)5; (0)

qG ,; + I)51:B (0)
qG ,1:B

= I)0qG .

The Local Linearity condition allows the �rst B dimensions
of the action features to have interaction e�ects with each
other. Therefore, this condition is milder than linearity of PI (Con-
dition 3.2), because linearity does not allow any interaction e�ects
across di�erent action features. When B = 1, the condition of local
linearity reduces to the linearity condition (Condition 3.2).

Building on these generalized conditions, we propose a new pol-
icy gradient estimator, called the Local Combination PseudoInverse
(LCPI) estimator, generalizing the PI estimator [35] as below.

r\b+LCPI (c\ ;D)

=
1
=

=’
8=1

 ’
02A

c\ (0 |G8 )r\ logc\ (0 |G8 )I0)
!
�†c0,G8 I08 A8 , (5)

where �c0,G := Ec0 (0 |G ) [I0I)0 |G].
LCPI satis�es unbiasedness against the PG r\+ (c\ ) under Con-

ditions 3.3 and 3.4, i.e., ED [r\b+LCPI (c\ ;D)] = r\+ (c\ ). This
indicates that LCPI can estimate the reward of new actions while
dealing with the interaction e�ects among action features (the
original PI estimator cannot deal with such interaction e�ects).

Although LCPI is e�ective for selecting new actions than PI by
dealing with the interaction e�ects, traditional policy- or regression-
based methods may achieve better performance within existing
actions. This is because they do not rely on any condition by fo-
cusing only on existing actions. Therefore, there is an interesting
tradeo� between our LCPI and traditional methods. While tradi-
tional methods focus on identifying the optimal one within existing
actions, LCPI is superior in choosing new actions levera�ng action
1Note that we focus on the �rst B dimensions just for ease of exposition, as the
dimensions of the action feature can be arbitrarily reordered.

features and local linearity. This interesting tradeo� leads us to �-
nally develop the Policy Optimization for New Actions (PONA)
algorithm, which integrates LCPI with the DR estimator as follows:

r\b+PONA (c\ ;^,D)
= ^ · r\+̂LCPI (c\ ;D) + (1 � ^) · r\+̂DR (c\ ;D), (6)

where ^ 2 [0, 1] is a hyperparameter that controls the trade-o�
between focusing on new actions and maximizing the overall policy
value by prioritizing existing actions. A larger value of ^ increases
the weight of the LCPI component, which leads to greater reliance
on the local linearity condition and a stronger focus on optimizing
new actions. However, this approach sacri�ces the e�ectiveness of
identifying the optimal actions within the set of existing actions.
In contrast, a smaller value of ^ increases the weight of DR, re-
ducing reliance on local linearity and shifting the focus toward
optimizing existing actions. This results in a more conservative
policy that rarely selects new actions. We can tune the value of ^ in
a data-driven manner using a cross-validation procedure. Multiple
formulations of cross-validation can be considered for tuning ^,
depending on the speci�c objectives. For instance, one can simply
maximize the policy value+ (c) on the validation set when tuning^ .
Alternatively, it is possible to impose constraints on the proportions
of new actions under the learned policy, allowing control over how
aggressive or conservative the new policy should be, as follows.

max
^

+̂ (c\ ,^ ;D) s.t. d!  E? (G ) [
’

02A=4F

c\ ,^ (0 |G)]  d* , (7)

where d! and d* de�ne the desired range for the proportion of
new actions. In the next section, we will empirically demonstrate
that, by performing this cross-validation procedure and changing
the values of d! and d* , we can �exibly control the proportion
between existing and new actions under the learned policy. Note
that, when performing cross-validation, we can estimate the policy
value +̂ (c\ ,^ ) of the policy induced by ^ by applying o�-the-shelf
OPE estimators such as IPS and DR in the validation set [25].

4 Empirical Evaluation
This section empirically evaluates our proposed method, PONA,
and its special case (LCPI) on synthetic and real-world datasets
(empirical results on real data can be found in Appendix D.2).

We begin by sampling context vectors G from a normal distribu-
tion. The action features span 3 = 5 dimensions, with each feature
having< = 3 possible values. The total number of possible actions
is thus |A| = 35 = 243. We then de�ne the synthetic q-function as

@(G,0) =
3’
;=1

@; (G, 5; (0))|       {z       }
:=G)"5; (0)

+@1:B (G, 51:B (0))|            {z            }
:=G)"51:B (0)

+W · @1:3 (G, 51:3 (0))|            {z            }
:=G)"51:3 (0)

,

whereW is a parameter that controls the contribution of the last term
@1:3 (G, 51:3 (0)). "5; , "51:B , and "51:3 are parameter matrices sam-
pled from a uniform distribution. The �rst term of the q-function,
@; (G, 5; (0)), represents the independent e�ect of each dimension
of the action feature. The second term, @1:B (G, 51:B (0)), captures the
interaction e�ects within the �rst B dimensions of the action feature.
Most methods, including IPS, DR, and ours, can handle the �rst
two terms because they do not involve interaction e�ects beyond



O�line Contextual Bandits in the Presence of New Actions Conference’17, July 2017, Washington, DC, USA

Figure 2: Comparisons of the overall policy value, policy value per existing action, and policy value per new action with varying
training data sizes (=). Note that the metrics are normalized by those of the uniform random policy.

Figure 3: Comparisons of the overall policy value, policy value per existing action, and policy value per new action with varying
percentages of new actions (|A=4F |/|A|). Note that the metrics are normalized by those of the uniform random policy.

Figure 4: Comparisons of the overall policy value, policy value per existing action, and policy value per new action with varying
degrees of local linearity violation (W ). Note that the metrics are normalized by those of the uniform random policy.

Figure 5: Comparisons of the overall policy value, proportion of existing actions, and proportion of new actions under the
learned policy with varying lower limits on the proportion of new actions (d! in Eq. (7)).

the �rst B dimensions. Only the original PI method [35] cannot esti-
mate the second term due to its reliance on the linearity condition.
The last term of the q-function, @1:3 (G, 51:3 (0)), accounts for the
interaction e�ects among all dimensions of the action feature. The
proposed methods cannot estimate the last term without bias due to
their reliance on local linearity, while existing methods can achieve
unbiased estimation of the q-function within existing actions re-
gardless of the interaction e�ects. By adjusting the W parameter,

we control the degree of the condition’s violation and evaluate the
robustness of our methods under these violations.

Compared Methods. We compare PONA and LCPI with the
logging policy c0, the regression-based method using action index
(RegBased (0)), the regression-based method using action feature
(RegBased (5 )), policy-based method w/ IPS (PolicyBased (IPS)),
policy-based method w/ DR (PolicyBased (DR)), and policy-based
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method w/ PI (PolicyBased (PI)). We report RegBased (5 ) as a
baseline method that estimates the q-function using action fea-
tures as input. It then picks the best action according to the es-
timated reward function @̂\ (G, 51:3 (0)). RegBased (5 ) di�ers from
RegBased (0) in that it may select new actions. To tune the hyper-
parameter ^ for PONA, we perform a grid search over the range
[0, 0.25, 0.5, 0.75, 1.0], selecting the best value in terms of optimizing
the policy value + (c) on validation data.

Result. We report the following metrics of policies learned by
each OPL method, averaged across 200 simulations.

• overall policy value: E[Õ02A c\ (0 |G)@(G,0)]
• policy value per existing action:

E[Õ02A4G8BC8=6
c\ (0 |G )@ (G,0) ]

E[Õ02A4G8BC8=6
c\ (0 |G ) ]

• policy value per new action: E? (G ) [
Õ

02A=4F c\ (0 |G )@ (G,0) ]
E[Õ02A=4F c\ (0 |G ) ]

Overall policy value measures the overall e�ectiveness of the
learned policy. Policy value per existing action evaluates the
quality of selecting existing actions, while policy value per new
action assesses that of selection within new actions.Note that the
logging policy c0, RegBased (0), PolicyBased (IPS), and Policy-
Based (DR) do not choose new actions at all, and thus their re-
sults donot appear in the�gures of policy value per new action.

How does PONA perform with varying sizes of training
data? First, we compare the OPL methods using varying sizes of
training logged data (= 2 {500, 1000, 2000, 4000}), as shown in Fig-
ure 2. The �gure shows that most methods, including PONA and
LCPI, improve in overall policy value, policy value per existing
action, and policy value per new action as the training data size
increases, which aligns with expectations. Notably, LCPI performs
particularly well in terms of the selection of new actions when the
training data size is relatively large (= = 2000, 4000). However, it
underperforms PolicyBased (DR) in terms of overall policy value.
In contrast, PONA combines the strengths of LCPI and PolicyBased
(DR), maintaining a policy value per new action comparable to
RegBased (5 ) while matching PolicyBased (DR) in terms of overall
policy value. Considering that existing methods, including Policy-
Based (DR), cannot select new actions at all, it is noteworthy that
PONA not only selects new actions and gives fair opportuni-
ties to them as e�ectively as RegBased (5 ) but also achieves
overall performance competitive with PolicyBased (DR).

How does PONA perform with varying numbers of new ac-
tions? Next, Figure 3 illustrates how the OPL algorithms perform
as the percentage of new actions, 100 · |A=4F |

|A | , increases. As the
percentage of new actions grows, the number of existing actions
decreases. The �gure shows that methods focusing exclusively on
existing actions (RegBased (0), PolicyBased (IPS), PolicyBased (DR))
exhibit a slight improvement in policy value for existing actions as
the percentage of new actions increases. This is because, with fewer
existing actions, it becomes easier to identify the optimal action
within the reduced set. Nevertheless, PONA consistently achieves
the same or slightly better overall policy value compared to Poli-
cyBased (DR), while also selecting new actions for any percentage
of new actions. In comparison, PolicyBased (DR) and other tradi-
tional methods never select new actions, even as the percentage of
new actions increases. PolicyBased (PI) is mostly worse than PONA

and LCPI in every metric due to its reliance on linearity, which is
severely violated in our experimental environment.

How does PONA perform when Condition 3.4 is violated?
We next evaluate the robustness of the proposed methods against
violations of their key condition, namely, local linearity. To test this,
we increase the value of W in the de�nition of the synthetic reward
function in the x-axis of Figure 4. The �gure demonstrates that as
W increases, the violations of the local linearity condition become
more pronounced, leading to a gradual decrease in the overall
policy value of LCPI. In contrast, existing methods that do not rely
on any assumptions about the q-function exhibit little change in
policy value with varying values of W , which is reasonable. Most
interestingly, PONA, which also relies on local linearity, is more
robust to the condition’s violation than LCPI. This occurs because
its data-driven tuning process in Eq. (7) adjusts its hyperparameter
^ to assign greater weight to the DR component as the violation
becomes more severe. This adjustment adaptively maintains the
policy value for existing actions, remaining a high overall policy
value. Even in scenarios where the ability to learn new actions is at
its weakest, PONA performs comparably to RegBased (5 ) for new
actions, signi�cantly outperforming PolicyBased (DR) and other
baseline methods in selecting new actions. These results highlight
PONA’s ability to maintain a high policy value and e�ectively learn
new actions, even when its key condition is severely violated

Howdoes PONAperformwhen varying the constraints about
the proportions of new actions during parameter tuning? In
the previous experiments, we did not impose any constraints on the
behavior of the learned policy when tuning the weight parameter
^ of PONA (i.e., always setting d! = �1 and d* = 1 in Eq. (7)).
As a result, the tuning procedure selected the ^ value that simply
maximized the overall policy value in the validation data.

In Figure 5, we report the overall policy value and the proportions
of existing and new actions under the learned policies for varying
lower limit d! in Eq. (7), while keeping d* = 1. Note that we
include the metrics for PONA (d! = �1) and PONA (^ = 1.0) as
references in the �gure. This experiment allows us to investigate
how well PONA’s behavior can be controlled through the tuning of
^. The right plot in Figure 5 demonstrates that, as the lower limit
on the proportion of new actions becomes larger, the proportion
of new actions under PONA (with varying d!) increases. This
result shows that we can control the behavior and aggressiveness of
the learned policy by appropriately formulating the tuning process
of the weight parameter ^. It is also reasonable that the overall
policy value of PONA decreases with larger d! , as this increases
the reliance of PONA on the local linearity condition.

5 Conclusion
This work tackled the challenge of OPL with new actions. We �rst
proposed the LCPI estimator for the policy gradient, which relaxes
the restrictive conditions of PI by accounting for interactions among
action features, enabling the more e�ective selection of new actions.
To balance the strengths of LCPI for new actions and DR for existing
actions, we also introduced the PONA algorithm. By integrating
these estimators through a weight parameter, PONA e�ciently
selects new actions while maintaining strong overall performance.
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