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Abstract
Machine learning models have been widely adopted for price pro-
motion and dynamic pricing in retail. However, one key challenge
these models often overlook is the inherent bias in the training
data, which is typically observational rather than experimental.
This bias can lead to confounded estimates of how discounts influ-
ence sales volumes, obscuring true causal relationships. Inspired
by the fixed-effects regression model, widely used in panel data
analysis for more reliable causal inference from observational data,
we introduce the Delta Method. This approach leverages de-meaned
variables in machine learning models to isolate within-product
variation and estimate product-level treatment effects. Using data
from an online furniture retailer, we found that the Delta Method
not only enhances out-of-sample prediction accuracy but, more
importantly, provides a clearer and more interpretable understand-
ing of the causal relationship between discount levels and sales at
both the individual product and aggregate levels. Furthermore, a
real-world experiment on the retailer’s website demonstrated that
the Delta Method led to a 3% increase in revenue and a 2% increase
in profit compared to traditional methods, confirming its practical
value for price promotion optimization.

CCS Concepts
• Theory of computation→ Theory and algorithms for application
domains; • Applied computing→ Economics, Machine Learning.
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1 Introduction
Many retailers rely on price promotions to attract new customers,
increase user engagement, and increase sales volumes. However,
identifying the optimal set of price promotions in a large assortment
of products can be challenging. Traditional retail practices often
rely on rule-based approaches, typically aiming for certain profit
margins or revenue targets. Although straightforward, these meth-
ods provide limited insight into how promotions truly affect sales.
Consequently, there is growing interest in data-driven strategies
that adapt pricing decisions more dynamically [3, 6, 9, 11, 12, 17].

A common solution is the "predict and optimize" framework,
which involves two steps. First, a predictive model estimates the lift
in sales volumes under different promotion levels, revealing how
sales might respond to varying discounts. Second, given these esti-
mates, the retailer solves an optimization problem (e.g., a knapsack-
type problem with budget constraints) to maximize total revenue
or profit under budget constraints. Intuitively, when budget limits
are present, deeper discounts should be assigned to products more
sensitive to price changes, while shallower discounts suffice for less
sensitive products.

However, this approach faces two key challenges. First, the "pre-
dict" component goes beyond simply forecasting demand. More
importantly, it should assess how sales respond to different pro-
motion levels, which is known as causal impact, as this insight is
crucial for the "optimize" [9]. Many recent studies fail to discuss
this issue, but it can be the key to the success of the algorithm
[12, 17, 21]. Second, the model needs to be capable of measuring
the product-level elasticity estimates. With large retailers manag-
ing millions of products, it is essential for algorithms to determine
which products are highly responsive to promotions and which are
less sensitive, thereby enabling more effective decision-making.

Establishing causal effects typically requires large-scale experi-
ments or A/B tests. Unfortunately, conducting large-scale pricing
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experiments can be expensive and may face regulatory or ethical
hurdles related to price discrimination. Moreover, experimental
results can quickly become outdated due to seasonality and shifting
market conditions. As a result, many studies are based on observa-
tional data instead of experimental data [6, 9, 12, 17]. However, re-
lying on observational data introduces confounding factors, which
can bias causal estimates unless appropriately addressed. Our study
aims to mitigate this issue by proposing a new method to estimate
the causal relationship between discounts and product sales using
observational data.

To address this issue, we propose a new approach called the
Delta Method. Inspired by fixed-effects regression models, which
are commonly used in economics and social sciences [18], our
approach focuses on within-product variation over time. Instead of
comparing different products, we compare each product to itself at
different points in time, effectively “differencing out” time-invariant
confounders such as baseline product popularity or brand effects.
Using de-meaning the variables, we expect to obtain a better causal
impact of promotions on product sales. In addition, the use of non-
linear machine learning models allows us to capture heterogeneous
effects at the product level. By de-meaning the variables before
inputting them into tree-based machine learning models, we retain
the flexibility and predictive power of these non-linear methods
while achieving a clearer causal interpretation.

We validate our approach using a data set of more than half
million products spanning two months from a large e-commerce
company. In the offline evaluation, we found that the machine
learning model with the Delta Method method largely improves
the causal effects of promotions on product sales. Specifically, we
observe that the estimated elasticity is aligned with fundamental
economic principles—higher discounts lead to higher sales—at both
the product and aggregate levels. The out-of-sample prediction
accuracy also slightly improves using the Delta Method. Based on
the offline evaluation, we chose the LightGBM model with Delta
Method as the demand model in the first stage and applied an
integer programming to solve the product promotion levels at the
second stage. To further evaluate the performance of the whole
algorithm on the business, we also conducted a large-scale A/B test
on millions of products for two weeks. The results show that the
revenue significantly increases by 3% and the profit increases by
2% using the Delta Method compared to the current algorithm that
we do not use Delta Method.

The main contributions are summarized as follows:

• We propose an end-to-end framework based on a debiased
machine learning model and integer optimization model to
suggest the price promotion levels for products, as shown in
Figure 1.

• Weemploy themachine learningmodel with theDeltaMethod
to improve the causal relationship between predicted prod-
uct sales and discounts using observational data.

• We successfully deploy the proposed price promotion algo-
rithm in real-world e-commerce retail. A/B test results reveal
that the algorithm significantly boosts key metrics, including
revenue and profit.

Figure 1: The production framework for the price promotion
system

2 Related Work
2.1 Two Approaches to Pricing Optimization:

Predict-Then-Optimize vs. Reinforcement
Learning

Pricing optimization in e-commerce and retail has historically been
divided into two major paradigms. The first, often referred to as
predict-then-optimize, involves building a demand model to predict
sales under various prices (or discounts) and then solving an opti-
mization problem to maximize revenue or profit subject to practical
constraints [5, 10, 20]. This paradigm has the advantage of model
interpretability in the prediction step and can incorporate sophisti-
cated optimization routines (e.g., knapsack-like budget constraints).

The second paradigm uses reinforcement learning (RL), where
an agent iteratively explores different pricing policies and updates
its strategy based on observed rewards [4, 14, 16, 22]. RL meth-
ods excel in highly dynamic, uncertain environments, but can be
data-hungry and less transparent about how price sensitivities are
derived. Although RL has found success in applications such as
real-time bidding and ride-sharing surge pricing, it often requires
extensive online experimentation to converge to optimal policies
[14], which may be infeasible for many retailers who are wary of
customer reactions or regulatory constraints.

In this paper, we focus on the predict-then-optimize framework,
which is widely adopted in e-commerce pricing due to its flexibility
and conceptual clarity. It allows for the integration of explicit causal
or econometric tools into the predictive step before running an
optimization routine.

2.2 Classical Regression and Machine Learning
Methods

Before the advent of modern machine learning, many retailers and
academics used classical regression methods–often linear models
with price or discount as a main regressor–to estimate a single
“average” elasticity across all products [6, 11, 19].

While such approaches are relatively easy to interpret, they tend
to impose uniform price sensitivity across heterogeneous products,
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potentially over- or under-estimating the true responsiveness of
individual items. Variations of regression-based methods have at-
tempted to introduce group-level or segment-level elasticities [11],
but this approach depends heavily on how the products are grouped,
and the resulting elasticity estimates remain coarse.

With the emergence of machine learning, retailers began fit-
ting more flexible models–such as random forests, gradient boost-
ing (e.g., XGBoost, LightGBM), and neural networks–that can cap-
ture non-linearities and product-level heterogeneity [2, 3, 9, 12,
17, 21]. These ML models often achieve stronger predictive perfor-
mance compared to linear regression and can, in principle, deliver
individual-level elasticity or uplift estimates [7, 15]. However, in-
terpretability becomes a concern: it is challenging to extract clear
elasticity coefficients from a deep neural network or a complex
ensemble of trees. Moreover, standard ML algorithms are typically
agnostic to economic constraints, such as the law of demand, unless
special structures–like monotonic constraints–are enforced [17].

2.3 Experiments and Causal Inference
The ideal way to obtain product-level elasticity is often to run large-
scale experiments–such as A/B testing–so that causal effects can
be precisely estimated without bias [1, 7]. Indeed, reinforcement
learning methods often rely on live experimentation to explore
different price actions [14]. Yet, field experiments in e-commerce
can be prohibitively expensive or legally delicate, especially if fre-
quent price variations raise concerns about price discrimination.
This tension leaves many retailers with observational data in which
discounts are not randomly assigned but systematically determined
by marketing teams, inventory needs, or product popularity.

Consequently, researchers have turned to econometric tech-
niques—like fixed-effects, instrumental variables, and difference-
in-differences—to approximate experimental conditions [11, 18].
Fixed-effects approaches, in particular, exploit within-product vari-
ation over time to filter out time-invariant confounders such as
baseline popularity or brand perception [11, 18]. However, these
techniques are often limited to linear models, making them less
adaptable to complex, non-linear machine learning routines that
can better capture heterogeneous relationships.

2.4 Our Contribution: A Product-Level and
Causally Informed Demand Model

In this work, we bridge the gap between flexible machine learn-
ing and econometric techniques for causal inference. We propose
the Delta Method, which combines de-meaning (from fixed-effects
ideas) with machine learning models to estimate product-level treat-
ment effects more accurately and transparently. Implementing these
transformations in the machine learning models retains the flex-
ibility of modern predictive algorithms while yielding elasticity
estimates aligned with fundamental economic principles.

2.4.1 Alignment with Economic Theory. De-meaning the discount
and sales variables at the product level ensures that predicted rela-
tionships between discount depth and sales volume are consistent
with the law of demand (monotonic trend), avoiding globally linear
assumptions that can oversimplify consumer behavior.

2.4.2 Granular, Product-Level Elasticities. Unlike classical regres-
sion approaches that rely on average or group-level elasticity mea-
sures, the Delta Method delivers individualized treatment effects.
Retailers can thus identify which products are most price-sensitive,
enabling more precise and profitable discount allocations.

2.4.3 Reduced Dependence on Costly Experiments. Large-scale pric-
ing experiments pose logistical, financial, and ethical challenges,
particularly around price discrimination. Leveraging an observa-
tional dataset, our method approximates many benefits of random
assignment while avoiding these hurdles, thereby offering robust
causal insights drawn directly from real-world data.

Overall, the Delta Method elevates the predict-then-optimize
paradigm by enhancing causal fidelity in demand estimation and
preserving the accuracy of contemporary ML techniques. This hy-
brid framework is readily scalable to e-commerce systems with
frequent price updates and large product assortments, providing
interpretable, product-level elasticity estimates to guide legal and
data-driven pricing strategies.

3 Method
This section delves into the key components of the price promotion
system. The primary goal is to develop an algorithm that deter-
mines optimal price promotion levels for millions of products in
upcoming promotional events. The assigned discounts should max-
imize revenue or profit while adhering to a budget constraint on
promotional costs.

Our approach follows the conventional two-step "predict and
optimize" framework. In the first step, we build a demand model to
quantify the relationship between quantity sold and discount levels.
Using this model, we estimate lift by predicting counterfactual
demand across different discount levels. In the second step, we
leverage these lift estimates in a mathematical optimization process
to determine the optimal discount levels while satisfying predefined
business constraints.

The next two sections provide a detailed breakdown of these
two steps.

3.1 Demand Model
The demand model estimation is a critical component of the price
promotion algorithm, designed tomeasure the sensitivity of product
sales to price promotions. It comprises several key elements:

First, the model must provide accurate demand predictions, en-
suring reliable forecasts of product quantity sold.

Second, it should capture the causal relationship between the
product quantity sold and the discount level, effectively quantify-
ing sales sensitivity to promotions. This is essential for generating
counterfactual predictions—estimating demand under different pro-
motion levels. According to the law of demand, the product quantity
sold should increase as discount levels rise. Thus, the model should
ideally exhibit a monotonic trend, where 𝑞𝑡𝑦𝑖𝑡 increases with 𝑑𝑠𝑐𝑖𝑡 ,
aligning with standard economic theory.

Finally, themodel must estimate the elasticity of product quantity
sold to promotions at the product level. The core intuition behind
the algorithm is to allocate deeper discounts to products that are
more responsive to price reductions, maximizing the impact of
promotions.
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3.1.1 Standard Method. Usually, the demand model is estimated
using the traditional method has the basic structure of (1):

𝑞𝑡𝑦𝑖𝑡 = 𝑓 (𝑑𝑠𝑐𝑖𝑡 , 𝑋𝑖𝑡 ) (1)

where 𝑞𝑡𝑦𝑖𝑡 represents the item quantity sold for product 𝑖 on day
𝑡 , 𝑑𝑠𝑐𝑖𝑡 represents the discount level for product 𝑖 on day 𝑡 , and 𝑋𝑖𝑡
represents a vector of covariates including product price, product
categories, popularity of the product, day of week, and, and week of
year. Here 𝑓 is the demand function. As we mentioned in the related
work section, previous studies [9, 12, 17, 21] have used regression
models, tree-based models, and neural network models to predict
demand.

Regression models are widely used in revenue management
due to their simplicity and interpretability. They also benefit from
well-established methods to address estimation bias. However, they
estimate the average treatment effect across all products, and cap-
turing group-level heterogeneity requires careful sample segmenta-
tion. The accuracy of this segmentation impacts results, and using
group-level elasticity may limit the optimization algorithm’s ability
to differentiate product sensitivity to discounts. Additionally, linear
models may have lower predictive accuracy than more complex
models.

In contrast, tree-based models and neural networks provide
higher predictive accuracy and better capture product-level sensi-
tivity. However, they are less suitable for estimating causal effects.

3.1.2 The Delta Method. To solve the above problem, we propose
to useDelta Method.Delta Method was inspired by the "de-meaning"
concept from fixed-effects regression models. Fixed-effects regres-
sion models are widely used for causal inference with longitudinal
or panel data in many social science domains [18]. One advantage
of these models is the ability to control for time-invariant variables,
allowing them to better quantify the causal effect compared to basic
regression models.

A basic regression model can be written as equation (2), while a
fixed-effects regression model can be written as equation (3). From
the fixed-effects regression model representation, it can be seen that
the respective mean values across time are subtracted from both the
dependent variable (𝑦) and the independent variable (𝑥 ). Intuitively,
this results in all of the variance for the dependent (𝑦) and the
independent (𝑥 ) variables being associated with the deviation from
the mean. If the product ID is used as a fixed effect in the fixed-
effects regression model, all the variance will be associated with
the deviation from the mean quantity sold for each product under
different discount levels.

𝑦𝑖𝑡 = 𝑋𝑖𝑡 𝛽 + 𝛼𝑖 + 𝑢𝑖𝑡 (2)

𝑦𝑖𝑡 − 𝑦𝑖 = (𝑋𝑖𝑡 − 𝑋 𝑖 )𝛽 + 𝑢𝑖𝑡 − 𝑢𝑖 (3)

For the Delta Method, we also apply this idea to the other models
by subtracting the mean from the key dependent and independent
variables (quantity sold and discount level) as shown in equation
(4).

𝑞𝑡𝑦𝑖𝑡 − 𝑞𝑡𝑦𝑖 = 𝑓 (𝑑𝑠𝑐𝑖𝑡 − 𝑑𝑠𝑐𝑖 , 𝑋𝑖𝑡 − 𝑋 𝑖 , 𝑋𝑖𝑡 ) (4)

3.2 Optimization
After training the model using historical data, we generate the
predicted product quantity sold (𝑞𝑡𝑦𝑖 ) given the current price (𝑝𝑖 )
under different discounts (𝑑𝑠𝑐𝑖 ). These lift estimates are used in a
constrained optimization, which ultimately suggests the optimal
discounts for all the products. In our operation, 𝑑𝑠𝑐 can only be one
of the following discounts: {0%, 5%, 10%, 15%, 20%, 25%}.

The discount optimization problem is formulated to maximize
the overall revenue. Following [9], we assume there is no substi-
tution effect among different products. In future work, one might
extend the demand function to incorporate cross-terms that capture
product interactions, turning the optimization into a multi-product
problem where each product’s discount affects others.

In our setting, we will ultimately assign one of the discounts
from {0%, 5%, 10%, 15%, 20%, 25%} to each product. This suggests the
usage of a multiple choice knapsack problem (MCKP) [13] with the
goal of maximizing the revenue under the budget constraint. The
full optimization can therefore be denoted as follows in equation
(5):

max
𝑑𝑠𝑐𝑖

∑︁
𝑖

𝑝𝑖 · 𝑞𝑡𝑦𝑖 (𝑝𝑖 , 𝑑𝑠𝑐𝑖 )

s.t.
∑︁

𝑝𝑖 · 𝑞𝑡𝑦𝑖 (𝑝𝑖 , 𝑑𝑠𝑐𝑖 ) · 𝑑𝑠𝑐𝑖 < Budget
(5)

where 𝑝𝑖 is the current price of product 𝑖 . To clarify,
∑
𝑝𝑖 ·

𝑞𝑡𝑦𝑖 (𝑝𝑖 , 𝑑𝑠𝑐𝑖 ) ·𝑑𝑠𝑐𝑖 represents the absolute discount cost multiplied
by predicted demand. This cost must remain under the allocated
budget.

Due to budget constraints, we are not able to select all the prod-
ucts at their optimal discount. Therefore, we face the problem
of distributing the budget and selecting discounts under budget
constraints. Despite this constraint, we can use this optimization
method to explore these suboptimal limitations. Here, we consider
the three different ways to optimize the target with limited budget.

The first method is to optimize revenue with a fixed budget, the
second method is optimizing profit (revenue less discount cost)
with a fixed budget, and the final method is optimizing revenue
with a fixed discount rate.

We selected the first option for two reasons. First, the business
goal is to generate more revenue without hurting the profit margin.
Optimizing revenue instead of profit meets the goal. Second, using
a fixed budget is consistent with how the budget is planned by the
business. However, we may experiment with the fixed rate option
in the future, which may help us to better control the budget.

Currently, we only consider a fixed number of discount options,
as described above. Therefore, we are solving an integer program-
ming problem. The integer programming is almost identical to
linear programming. We solve this integer programming problem
using the pulp package in Python. Finally, since the discount set is
discrete, this problem remains tractable for millions of products by
leveraging efficient CBC solvers and parallel processing.

4 Evaluation
In this section, we discuss the data that we use, the evaluation
methods, and the performance of the models.
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4.1 Data
The data we are using come from a leading e-commerce retailer
selling furniture and home products. The data includes four main
components: the purchase records for the products, the daily price
and discounts for the products, the category and subcategories of
the products, and the seasonality variables such as the day of the
week and the week of the year. From these features, we constructed
a daily-product level dataset.

As we mentioned in the method session, the outcome variable is
the daily product quantity sold. The key dependent variable is the
product discount of the day. For each product, one of the following
discounts {0%, 5%, 10%, 15%, 20%, 25%} is assigned for each discount
campaign. Each campaign may last anywhere from 2 days to 2
weeks.

4.2 Model Performance
In the offline evaluation, we use two main approaches to assess the
model’s performance with historical data. The key advantage of the
Delta Method is its ability to provide a more accurate estimation
of the causal relationship between discounts and product quantity
sold. Additionally, we evaluate the model’s prediction accuracy, a
standard practice in machine learning.

To compare the Delta Method with the standard approach, we
test six models: a standard regression model, LightGBM model, and
neural network model, alongside their counterparts using the Delta
Method. In the regression model, the standard approach applies a
basic regression, while the Delta Method uses a fixed-effects regres-
sion. For LightGBM and neural networks (which combine linear
and ReLU layers), the model structures remain consistent across
both methods.

4.2.1 Causality. To evaluate the model’s causal validity, we check
whether the results align with the law of demand—where higher
discounts lead to increased product quantity sold. We conduct a
detailed comparison at both the aggregate and product levels.

First, we analyze the relationship between product quantity sold
and discount levels. Table 1 presents the regression results. Column
(1) shows the average product quantity sold at various discount
levels, while Columns (2) and (3) examine the impact of different
discount levels on sales. Column (1) indicates that products with
a 5% discount have the highest average sales, whereas those with
a 25% discount have lower sales. Since discounts are not assigned
randomly, this basic regression captures existing correlations rather
than causal effects. Column (2) further suggests that a 5% discount
is the most effective, contradicting the law of demand. However,
Column (3), which incorporates fixed effects, corrects this bias and
reveals a proper monotonic relationship—higher discounts lead to
higher product quantity sold.

One possible explanation is that more popular products are more
likely to receive a 5% discount under the current pricing strategy.
The basic regression results reflect differences across products,
while the fixed-effects regression better isolates the causal impact
by controlling for within-product variation over time. This suggests
that the fixed-effects model more accurately captures the causal
relationship between discounts and sales.

We also compare aggregate predicted results between the stan-
dard approach and theDelta Method using LightGBM and the neural

network model. Table 2 shows the predicted average product quan-
tity sold at different discount levels from the LightGBM model.
Similar to the linear regression results, the standard method does
not follow a monotonic trend, while the Delta Method correctly
indicates that higher discounts lead to higher product quantity
sold. Table 3 presents the neural network results, showing the same
pattern.

Table 1: Regression results

sample average standard regression FE regression
(1) (2) (3)

dsc=0% 0.084
dsc=5% 0.543 0.449*** 0.206***
dsc=10% 0.418 0.345*** 0.252***
dsc=15% 0.448 0.367*** 0.307***
dsc=20% 0.308 0.221*** 0.369***
dsc=25% 0.199 0.121*** 0.382***
Note: Column (1) shows the average product quantity sold at different discounts.

Column (2) and (3) show the coefficients of discounts in the standard and fixed-effect
(FE) regression models, which represent the impact of the discount on sales.

Significance levels: * 𝑝 < 0.1, ** 𝑝 < 0.05, *** 𝑝 < 0.01.

Table 2: LightGBM: Standard vs Delta

sample average standard LightGBM delta LightGBM
(1) (2) (3)

dsc=0% 0.084 0.266 0.224
dsc=5% 0.543 0.372 0.230
dsc=10% 0.418 0.299 0.246
dsc=15% 0.448 0.313 0.286
dsc=20% 0.308 0.202 0.320
dsc=25% 0.199 0.202 0.346
Note: Column (1) shows the average product quantity sold at different discounts.

Column (2) and (3) show prediction product quantity sold under different discounts
from the standard LightGBM model and the LightGBM with Delta Method

Table 3: Neural network: Standard vs Delta

sample average standard network delta network
(1) (2) (3)

dsc=0% 0.084 0.164 0.099
dsc=5% 0.543 0.227 0.180
dsc=10% 0.418 0.260 0.260
dsc=15% 0.448 0.274 0.330
dsc=20% 0.308 0.316 0.393
dsc=25% 0.199 0.294 0.451
Note: Column (1) shows the average product quantity sold at different discounts.

Column (2) and (3) show prediction product quantity sold under different discounts
from the standard neural network model and the neural network model with Delta

Method.

The machine learning model incorporating the Delta Method
has demonstrated superior performance in capturing causal rela-
tionships at an aggregated level. We anticipate a similar pattern
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Figure 2: The quantitative relationship between discount
levels and product quantity sold for 5 randomly selected
products from the standard LightGBM

Figure 3: The quantitative relationship between discount
levels and product quantity sold for 5 randomly selected
products from the LightGBM with Delta Method

at the product level for most items, which is crucial for the algo-
rithm’s success. Both the nonlinear LightGBM and neural network
models can estimate product-level elasticity. Using these models,
we predict the product quantity sold under varying discount levels
while holding other features constant.

Figures 2 and 3 depict the results for the standard LightGBM
model and the LightGBM model with the Delta Method, respec-
tively. To better illustrate trends, we normalize item quantities to
the range [0,1] and randomly select five products from the sample.
Notably, the LightGBM model with the Delta Method captures
a more reasonable relationship between discounts and product

Figure 4: The quantitative relationship between discount
levels and product quantity sold for 5 randomly selected
products from the standard neural network model

Figure 5: The quantitative relationship between discount
levels and product quantity sold for 5 randomly selected
products from the neural network model with Delta Method

quantity sold compared to the standard LightGBM model. Addi-
tionally, we observe heterogeneous discount effects across different
products.

A similar pattern emerges with a simple two-layer neural net-
work model. Figures 4 and 5 show the results for the standard
neural network and the neural network incorporating the Delta
Method. Notably, predictions from the Delta Method-enhanced
neural network align with the law of demand, indicating that higher
promotions lead to increased sales.
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Overall, the Delta Method significantly improves causal infer-
ence, allowing for more reliable predictions of product quantity
sold under different discount levels.

4.2.2 Prediction Accuracy. In addition to evaluating the quantita-
tive relationship between discount levels and product quantity sold
, we also assess the prediction accuracy of each model.

In this part, we aim to evaluate the performance of the proposed
model by utilizing a comprehensive set of metrics to capture various
aspects of its accuracy and reliability. These metrics are as follows:

• Mean Absolute Percentage Error (MAPE): This metric
measures the average percentage difference between the
predicted and actual values, providing an intuitive sense of
the prediction accuracy in relative terms. It is widely used
to evaluate forecasting models, especially when the scale of
the data varies.

• Revenue-WeightedMAPE: A variation ofMAPE thatweights
errors based on revenue contribution. By prioritizing pre-
dictions for higher-revenue items, this metric ensures the
model’s performance is aligned with business priorities, fo-
cusing on areas with the greatest financial impact.

• Pearson Correlation: This statistic measures the linear
relationship between predicted and actual values, with a
value close to +1 indicating a strong positive correlation. It
provides insights into how well the predicted trends align
with the observed data.

• Mean Absolute Error (MAE): MAE calculates the average
magnitude of the errors between predictions and actual val-
ues, treating all deviations equally. It is useful for assessing
the model’s overall prediction accuracy in absolute terms,
regardless of direction.

• Median Absolute Deviation (MAD): MAD focuses on
the median of the absolute errors, making it robust to out-
liers. This metric is particularly helpful for evaluating the
model’s performance in scenarios where extreme deviations
are present.

• Coefficient of Determination (R2): Commonly known as
R-squared, this metric quantifies the proportion of variance
in the actual data that is explained by the model’s predic-
tions. A higher R2 value indicates that the model effectively
captures the variability in the data, demonstrating its ex-
planatory power.

We assessed the model’s performance on the test data, with
the results presented in Table 4 and Table 5. As shown, models
incorporating the Delta Method consistently outperform those
using the standard approach across most evaluation metrics. The
LightGBM model with Delta Method has the best performance in
prediction accuracy using the test sample.

Given its strong performance in both causal inference and pre-
dictive accuracy, the LightGBM model with the Delta Method was
selected as our demandmodel for online A/B testing and production
deployment.

4.3 A/B testing
To evaluate the effectiveness of the new algorithm, we conducted a
large-scale A/B test on an online retailer’s platform. In this experi-
ment, approximately 3 million products were randomly assigned

Table 4: Standard method model performance

Regression LightGBM Neural Network
MAPE 1.914 0.852 1.116
weighted_MAPE 0.847 0.529 0.827
Person Correlation 0.230 0.757 0.195
MAE 6.872 3.875 3.927
MAD 4.610 1.605 2.032
R2 0.044 0.622 0.570

Table 5: Delta method model performance

Regression LightGBM Neural Network
MAPE 1.188 0.836 0.798
weighted_MAPE 1.249 0.502 0.511
Person Correlation 0.636 0.840 0.831
MAE 5.508 3.712 3.687
MAD 2.371 1.554 1.549
R2 0.307 0.703 0.690

to treatment and control groups. Products in the treatment group
received discount assignments generated by the new algorithm,
while those in the control group were assigned discounts using the
existing algorithm.

The existing algorithm relies on an XGBoost model and does not
account for causality, whereas the new algorithm incorporates the
Delta Method to address this issue. Importantly, other key compo-
nents—such as the optimization framework and the total discount
budget—remained consistent across both groups.

To assess the impact of the new algorithm, we applied Lachen-
bruch’s two-part test [8]. The results showed that the treatment
group achieved a 3% increase in revenue and a 2% increase in profit
compared to the control group. These improvements were statisti-
cally significant at the 5% level.

Based on these findings, we conclude that the new algorithm
significantly improves key financial outcomes by addressing the
causality issue inherent in the previous approach.

4.4 Deployment
Following the A/B test, the business decided to adopt the pricing
promotions recommended by the machine learning algorithm. As a
result, the algorithm was deployed into production. In addition to
the components for data pulling, continuous model training, and
inference illustrated in Figure 1, a monitoring system was imple-
mented to track the algorithm’s performance and project financial
outcomes. Since its launch, the system has been functioning as
expected.

5 Conclusion
In conclusion, price promotions remain a vital tool for retailers aim-
ing to enhance revenue and profitability. While machine learning-
based methods have become increasingly popular for optimizing
price promotions, their application to historical data often results
in models that are highly predictive but do not necessarily capture
the causal relationship between price and quantity sold. On the
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other hand, traditional economic regression models, though inter-
pretable, tend to focus on average treatment effects and exhibit
lower predictive accuracy.

In this paper, we introduced a novel approach, the Delta Method,
which synthesizes the strengths of both machine learning and tra-
ditional regression techniques. Drawing from the fixed-effects re-
gression model commonly used in panel data analysis, we applied a
de-meaning transformation to tree-based machine learning models.
This allowed us to estimate product-level treatment effects, correct-
ing for unobserved heterogeneity across products and focusing on
variations over time within each product.

Our offline analysis, using data from an online furniture retailer,
demonstrated that the Delta Method not only improved prediction
accuracy on test data but also provided a more interpretable model
of the relationship between discount levels and quantities sold. Fur-
thermore, a real-world experiment on the retailer’s website showed
that the Delta Method outperformed traditional approaches, result-
ing in a 3% increase in revenue and a 2% increase in profit. These
results underscore the importance of combining flexible machine
learning models with careful causal inference methods to ensure
both interpretability and higher profit outcomes in e-commerce.
Future research might explore applying the Delta Method to more
complex settings, such as scenarios with cross-product interactions
or multi-period pricing decisions. Such extensions could further
validate the adaptability and robustness of our approach across
diverse retail environments.

Overall, our findings highlight the potential of the Delta Method
as a powerful tool for improving the effectiveness of price promo-
tions in e-commerce settings.
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