A Debiased Machine Learning Framework for Optimizing Price Promotion in E-commerce

Bo Zhang (PayPal), Sergazy Nurbavliyev, Vaidyanath Areyur Shanthakumar, Stephen Merrill, Raymond J. Pan, Komson Chanprapan (Beyond Inc)

KDD Toronto 2025

Problem

 Objective: Using data and model-driven algorithm to recommend price promotion/discount levels for millions of products

Goal: Optimizing business metrics such as revenue or profit

- Constraint:
 - Budget X% of the total revenue
 - Discount levels [5%, 10%, 15%, 20%, 25%]

Challenges with Existing Approaches

- Two step approaches:
 - Predict: Estimate individual level product demand sensitivity to different promotion levels
 - Optimization: Using the predicted sensitivities, apply optimization techniques to select the optimal discounts for each product by maximizing overall financial performance under business constraints.

Issues:

- In industry practice, the focus is often on improving demand prediction accuracy rather than estimating causal impacts.
- Uplift modeling requires unbiased experimental data, which is often difficult and costly to obtain.

Delta Method

 Inspired by fixed-effects regression in economics. The intution is that the impact is driven by within-product variation via demeaning variables.

$$y_{it} - \overline{y}_i = (X_{it} - \overline{X}_i)\beta + u_{it} - \overline{u}_i$$

 Similary, we de-meaning the y and x in a machine learning model to get the individual treatment effects

$$qty_{it} - \overline{qty}_i = f(dsc_{it} - \overline{dsc_i}, X_{it} - \overline{X}_i, X_{it})$$

Evaluation: Aggregated Impact

Table 2: LightGBM: Standard vs Delta

	sample average	standard LightGBM	delta LightGBM
	(1)	(2)	(3)
dsc=0%	0.084	0.266	0.224
dsc=5%	0.543	0.372	0.230
dsc=10%	0.418	0.299	0.246
dsc=15%	0.448	0.313	0.286
dsc=20%	0.308	0.202	0.320
dsc=25%	0.199	0.202	0.346

Note: Column (1) shows the average product quantity sold at different discounts.

Table 3: Neural network: Standard vs Delta

10			
	sample average	standard network	delta network
	(1)	(2)	(3)
dsc=0%	0.084	0.164	0.099
dsc=5%	0.543	0.227	0.180
dsc=10%	0.418	0.260	0.260
dsc=15%	0.448	0.274	0.330
dsc=20%	0.308	0.316	0.393
dsc=25%	0.199	0.294	0.451

Note: Column (1) shows the average product quantity sold at different discounts

Evaluation: Individual Effect Using Standard Method

Figure 2: The quantitative relationship between discount levels and product quantity sold for 5 randomly selected products from the standard LightGBM

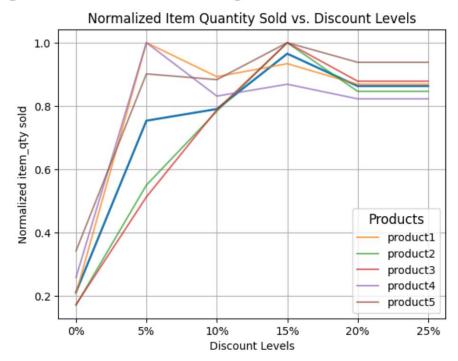
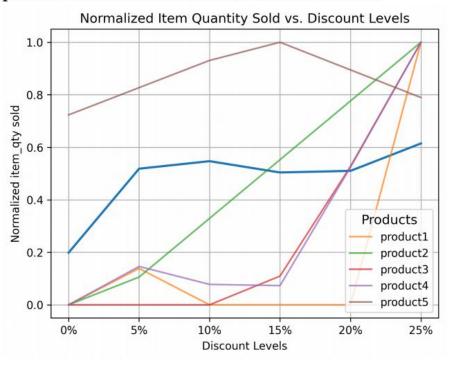



Figure 4: The quantitative relationship between discount levels and product quantity sold for 5 randomly selected products from the standard neural network model

Evaluation: Individual Effect Using Delta method

Figure 3: The quantitative relationship between discount levels and product quantity sold for 5 randomly selected products from the LightGBM with Delta Method

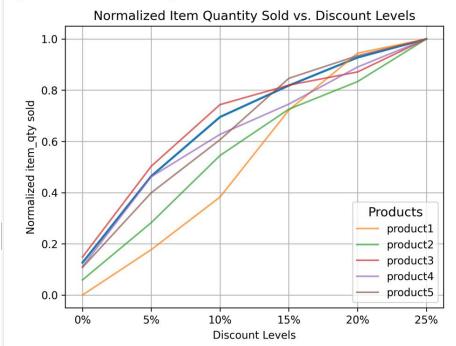
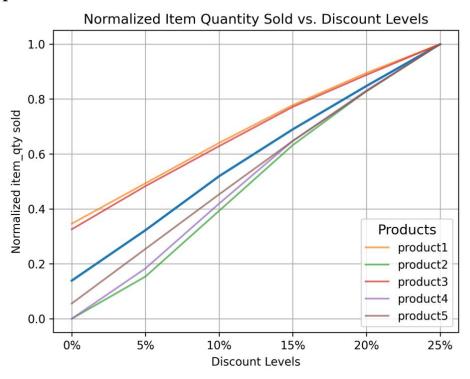



Figure 5: The quantitative relationship between discount levels and product quantity sold for 5 randomly selected products from the neural network model with Delta Method

Evaluation: Accuracy

Table 4: Standard method model performance

. 1	D

	Regression	LightGBM	Neural Network
MAPE	1.914	0.852	1.116
weighted_MAPE	0.847	0.529	0.827
Person Correlation	0.230	0.757	0.195
MAE	6.872	3.875	3.927
MAD	4.610	1.605	2.032
R2	0.044	0.622	0.570

	Regression	LightGBM	Neural Network
MAPE	1.188	0.836	0.798
weighted_MAPE	1.249	0.502	0.511
Person Correlation	0.636	0.840	0.831
MAE	5.508	3.712	3.687
MAD	2.371	1.554	1.549
R2	0.307	0.703	0.690

Table 5: Delta method model performance

Results — Real-World Impact

- A/B Test: 3 million products randomized, 2-week experiment.
- Delta Method vs. standard algorithm:
- Revenue: +3%
- Profit: +2%
- Statistically significant improvements, robust to business constraints.

Q&A