
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Leveraging Large Language Models and Knowledge Graphs for
Disease Theory Exploration and Causal Analysis

Isak Midtvedt
Oslo Metropolitan University

Norway
s350289@oslomet.no

Shanshan Jiang
SINTEF AS
Norway

shanshan.jiang@sintef.no

Dumitru Roman
SINTEF AS / Oslo Metropolitan

University
Norway

dumitru.roman@sintef.no

Abstract
Clinical researchers need timely, evidence-supported overviews
that clarify the underlying mechanisms and pathways of disease
development. Manual curation of causal mechanisms is highly
time-consuming and increasingly infeasible due to the exponen-
tial expansion of the biomedical literature. This paper introduces
KnowDisease – an approach to automatically extracting disease
theory mechanisms and causal relationships from biomedical liter-
ature using Large Language Models, exploiting Chain-of-Thought
prompting with evidence traceability and constructing Knowledge
Graph-based disease theories for causal analysis. An application is
implemented based on this approach, enabling researchers to visu-
alize complex disease pathways and causal relationships, navigate
interconnected biological mechanisms and identify evidence for
various disease theories based on constructed knowledge graphs.
The work demonstrates how LLM-assisted tools can advance under-
standing of disease mechanisms and potentially accelerate biomed-
ical research.

CCS Concepts
• Computing methodologies → Knowledge representation
and reasoning; Natural language generation.

Keywords
Large Language Model, Knowledge Graph, Disease Theory
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1 Introduction
Modern biomedical research faces the critical challenge of manag-
ing and interpreting an exponentially expanding body of research
data. The extensive and complex nature of biomedical publications
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presents significant barriers to manually identifying causal rela-
tionships and underlying disease mechanisms.

Understanding disease progression relies on explanatory models,
or disease theories, which are essential to improve diagnosis, treat-
ment, and prevention. Representing these theories computationally
is challenging due to their complexity and evolving nature. Effec-
tive models must capture causal mechanisms, supporting evidence,
and biological context and at the same time remain flexible to incor-
porate new knowledge. While ontologies (e.g., SNOMED-CT and
Gene Ontology) and description logics [11] provide standardized
vocabularies and logical frameworks for medical knowledge bases,
comprehensive modeling of explanatory and causal relationships
remains an open research area. Capturing these causal links is vi-
tal for enabling targeted interventions, explainable decisions, and
advancing precision medicine.

Knowledge Graphs (KGs) offer promising, effective representa-
tions of complex biomedical information, supporting reasoning and
enhancing causal inference by uncovering implicit relationships
in structured, semantic data. At the same time, Large Language
Models (LLMs) have rapidly advanced, enabling domain-specific
applications in scientific text analysis.

The objective of this paper is to leverage LLMs and KGs to assist
researchers in exploring disease mechanisms, identifying causal
pathways, and tracing supporting evidence with greater efficiency
and transparency. In particular, we aim to explore how to accu-
mulate knowledge from multiple scientific papers while maintaining
full traceability to supporting evidence. To address these goals, we
proposed an approach—KnowDisease—utilizing LLMs and KGs for
disease theory extraction and analysis:

• To address KG challenges regarding maintaining evidence
traceability and ensuring accessibility for non-technical
domain experts, KnowDisease uses LLM for transparent
term extraction and evidence linking, and presents results in
an interactive Neo4j graph interface optimized for intuitive
exploration.

• To address LLM limitations, such as hallucinations, limited
handling of rare or specialized concepts, and insufficient
capacity for robust causal reasoning, KnowDisease com-
bines Retrieval Augmented Generation (RAG) with Chain-
of-Thought (CoT) prompting, ensuring relevant context is
provided and model reasoning remains transparent.

The main contribution of this work is the KnowDisease approach
for disease theories establishment from scientific literature based
on LLMs and KGs, demonstrated and evaluated for disease theory
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exploration, featuring automatic knowledge extraction and rep-
resentation, interactive KG visualization, evidence-based theory
exploration and causal pathway identification.

The remainder of this paper is organized as follows. Section
2 presents background and related work. Section 3 introduces
the KnowDisease approach, and Section 4 provides details about
KnowDisease implementation, while Section 5 outlines the evalua-
tion framework and results. Finally, Section 6 concludes the paper.

2 Background and Related Work
2.1 Knowledge Graphs in Biomedical Research
Biomedical research produces vast, fragmented data across litera-
ture, databases, and clinical records. Early examples such as Het-
ionet [4] demonstrated the potential of KGs to generate novel hy-
potheses, such as drug repurposing, by revealing non-obvious con-
nections. More recent efforts such as SPOKE [10] and KG-COVID-
19 [12], scaled this approach by integrating diverse data sources
to support personalized medicine and rapid crisis response. De-
spite their advances, key challenges remain, for example, regarding
maintaining evidence traceability and ensuring accessibility for
non-technical domain experts.

2.2 LLMs for Scientific Literature Analysis
The rapid development of LLMs has significantly enhanced capabil-
ities in natural language processing (NLP), particularly in scientific
text analysis. Early successes with general models such as BERT
led to specialized variants, e.g., BioBERT [6] and PubMedBERT [3],
which demonstrated superior performance on biomedical NLP tasks
through training on domain-specific corpora. The emergence of
generative LLMs, such as BioGPT [9], further extended capabilities
to fluent generation, question answering, and zero-shot relation
extraction, often outperforming larger general models on tasks like
PubMedQA [5]. Retrieval-Augmented Generation (RAG) enhances
these models by grounding outputs in retrieved source material,
improving factual accuracy and traceability—critical features for
scientific domains [7]. However, challenges need to be addressed:
LLMs are prone to hallucinations, may struggle with rare or highly
specialized concepts, and often lack robust causal reasoning.

2.3 RAG Pipelines for Biomedical Data
RAG has been applied in health domain to help LLM models gener-
ate more accurate answers using information from external sources,
e.g., pipelines described in [14] and LLMDap1. LLMDap is a LLM-
based pipeline for data enrichment. LLMDap improves metadata
quality and discoverability by automatizing metadata assessment
and enrichment, providing a sequential processing pipeline archi-
tecture that gives an essential foundation for structured data genera-
tion from biomedical literature. LLMDap focuses mainly on dataset
metadata extraction, linking to the ArrayExpress database.

KnowDisease builds upon LLMDap and extends it by adapting the
LLM pipeline and integrating with KGs for extraction and analysis
of disease theories. Targeting improved reliability, transparency,
and biomedical relevance, KnowDisease introduces several key en-
hancements over the original LLMDap pipeline:

1https://github.com/SINTEF-SE/LLMDap

• Information Extraction: Replaced regex constraints with
CoT prompting and JSON schema validation using Outlines,
improving reliability and interpretability.

• Data Preprocessing: Improved XML handling and chunking
quality by preserving document structure and targeting
papers with rich disease theory content.

• Knowledge Representation: Shifted from metadata profiling
to constructing disease-specific KGs with causal links and
full evidence provenance in Neo4j.

• Semantic Retrieval: Enhanced retrieval precision using domain-
specific embeddings and relevance thresholds tailored to
biomedical queries.

• User Interface: Introduced a Streamlit-based interface for
interactive exploration of KGs, evidence, and causal dia-
grams.

3 KnowDisease Approach
KnowDisease is based on an end-to-end pipeline that automatically
extracts disease theory mechanisms and causal relationships from
biomedical literature using LLMs and constructs KGs-based disease
theories, as illustrated in Figure 1.

Figure 1: KnowDisease Approach: Graph-based disease theo-
ries construction with LLM-based pipeline.

3.1 KG-based Disease Theory Representation
In KnowDisease, disease theories are represented as KGs where the
nodes represent the key aspects in the disease theories and the edges
represent their relationships, including causal relationship. This
approach preserves the inherent structure of the theories, enabling
the systematic exploitation of KGs reasoning capabilities.

An example KG structure for our experiments is designed with
six primary nodes (disease_name, etiology_factor, diagnostic_method,
biomarker, treatment_intervention and prognostic_indicator), rep-
resenting key disease theory elements and their relationships. A
Graph Schema is defined to store disease theory KGs in graph data-
base following this KG structure.

A Disease Theory Schema is defined based on the KG structure to
facilitate extracting structured, meaningful disease theory elements

2
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from biomedical literature using LLMs. The schema consists of six
primary fields corresponding to the six nodes defined in the KG
structure. Each field has a detailed description used in both context
retrieval and LLM generation steps of the LLM-based pipeline (see
details in Section 3.2).

A mapping of Disease Theory schema fields to graph schema is
designed to reflect the structure and preserve the meaning of re-
lationships between disease concepts, facilitating storing the ex-
tracted disease theory elements in graph databases for disease the-
ory construction and causal analysis. Each relationship type is
clearly defined as to what it represents, HAS_ETIOLOGY_FACTOR
for instance indicates a causal relationship, whileHAS_BIOMARKER
represents a measurable indicator relationship. This semantic struc-
ture enables sophisticated queries about disease mechanisms and
their supporting evidence.

3.2 Pipeline for Disease Theory Population
An end-to-end pipeline is exploited to extract relevant information
from biomedical literature and construct KGs for disease theories.
This pipeline consists of five components representing key steps in
the pipeline as depicted in Figure 1:

• Paper fetching and cleaning: Retrieve publications with
metadata from scientific literature databases and trans-
forme them into clean, structured text. To retain paper
section hierarchy, title passages are converted into mark-
down headers (e.g., ## for level 2) to define natural content
boundaries.

• Document chunking: Split the structured text into manage-
able, semantically coherent chunks (i.e., text segments) by
leveraging the markdown headers inserted in the first step.

• Context retrieval: Rank chunks based on semantic similarity
with Disease Theory Schema fields using domain-specific
embeddings, and output high-relevance segments per field,
providing the LLM with context-rich input tailored for dis-
ease theory extraction.

• LLM generation: Generate answers and extract evidence
for fields representing disease theory elements with LLM
using retrieved context. A CoT approach is exploited for
verification and interpretation of outputs and extraction of
evidence quotes, ensuring trustworthiness.

• KG-based disease theory construction and causal analysis:
Build disease theory graphs from the LLM outputs and
produce causal diagramswith accumulated knowledge from
multiple papers.

The first four components build upon the original LLMDap with
notable adaptions to optimize the performance, while the last com-
ponent is a new one dedicated for disease theory analysis, leverag-
ing KG’s inference power.

3.2.1 Paper fetching and cleaning. The component retrieves re-
search articles about a specified disease in XML format, using
specialized Medical Subject Headings (MeSH)2 terms and well-
constructed queries to target papers with causal and mechanistic
disease information.

2Medical Subject Headings (MeSH) from National Library of Medicine: https://meshb.
nlm.nih.gov.

The query construction uses the disease name as a major topic,
incorporates MeSH terms related to disease mechanisms, targets
keywords like “pathogenesis”, “mechanism” and “theory”, and filters
for open-access papers. These strategies ensure retrieval of highly
relevant literature for populating the KG. The query outputs XML
files with paper text and structural metadata, which are converted
into clean, structured text suitable for downstream processing.

The processing identifies and filters <passage> elements based
on type and section_type metadata, excluding non-informative
sections (e.g., references, acknowledgments, licenses). Unlike the
original LLMDap, which minimally structured the output, our ap-
proach retains section hierarchy by converting title passages into
markdown headers, aiding coherent chunking.

Remaining content passages are included as-is, and all chunks
are joined with double newlines to preserve paragraph separation.
The output is a markdown-enhanced document that preserves logi-
cal structure and provides cues for semantically aware chunking,
enabling more effective disease theory extraction.

3.2.2 Document chunking. The component splits the structured,
markdown-enhanced text into manageable, semantically coherent
units (i.e., chunks) for downstream analysis and retrieval. Unlike the
original pipeline, which relied on fixed section titles (e.g., "METH-
ODS," "RESULTS"), our approach uses markdown headers inserted
during Paper fetching and cleaning to define natural content bound-
aries. This structure-aware method improves adaptability across
diverse biomedical documents, even those lacking standard section
labels. Chunks are initially split at markdown headers, with further
subdivision guided by a hierarchy of breakpoints—prioritizing para-
graphs, then line breaks, sentence ends, and only splitting within
sentences as a last resort.

To enhance chunk quality, an overshoot factor is applied for
flexible sizing and filter out fragments below aminimum length. The
output is a set of TextNode objects [8] containing well-structured
text segments and metadata, forming the basis for targeted retrieval
in disease theory modeling.

3.2.3 Context retrieval. This step identifies themost relevant chunks
for each field in the disease theory schema. It filters and selects con-
tent to provide the LLM with targeted input for accurate extraction.

Building on the original LLMDap architecture, we optimized
retrieval by incorporating domain-specific embeddings. Document
chunks and schema field descriptions are embedded into a shared
vector space using the fine-tuned model pritamdeka/S-PubMedBert-
MS-MARCO[2], which improves semantic matching of biomedical
concepts.

Semantic similarity is computed via cosine similarity, enabling
robust identification of relevant content despite lexical variation.
A configurable relevance threshold excludes low-scoring chunks,
reducing noise.

The output is a concatenated string of high-relevance segments
per field, feeding the LLMwith tailored, context-rich input to enable
disease theory extraction.

3.2.4 LLM generation. This component represents a major ad-
vancement over the original LLMDap pipeline. Replacing regex-
constrained outputs, a CoT approach is adopted using a CoT model
schema consisting of:
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• reasoning: step-by-step reasoning process for deriving the
answer.

• evidence:mapping from each extracted term to the verbatim
quote(s) from the supporting context.

• final_answer: up to three distinct terms that directly and
specifically answer the field’s question and at the same time
serve as key indicators of supporting evidence.

This design requires the LLM to return structured JSON con-
taining the extracted term, its reasoning, and supporting evidence,
enhancing not only performance, but also transparency and trace-
ability. By prompting step-by-step reasoning, the model reveals
its decision process, enabling verification and interpretation of
outputs.

The Outlines library [13] is used to enforce schema-conformant
JSON generation, eliminating parsing errors common with regex
and supporting more complex, interpretable responses. Verbatim
evidence quotes strengthen the reliability of extractions and support
expert validation, ensuring high trustworthiness in a domain where
precision is critical.

3.2.5 KG construction and causal analysis. The structured informa-
tion extracted with the previous steps (Subsections 3.2.1-3.2.4) is
processed to construct KGs using graph databases. This includes
entities normalization, creation or update of nodes representing
disease elements and establishment of relationships between them.
In particular, connections between source publication and extracted
supporting textual evidence are created to facilitate transparency
and traceability.

Evidence Extraction and Merging. This component addresses the
challenge stated in the introduction: how to accumulate knowledge
from multiple research papers while maintaining full traceability
to supporting evidence. The most critical feature is the evidence
accumulation strategy through building relationships that grow
richer with each processed paper. This approach ensures that when
a relationship already exists between two nodes, new evidence and
source information is appended rather than overwritten and allows
for merge related information without losing the evidence trail
from individual sources when processing multiple papers about the
same disease.

Furthermore, the evidence storage mechanism preserves the
full CoT reasoning from the extraction process. A flexible format
that accommodates both the enhanced CoT evidence structure
and simpler string-based evidence for backward compatibility is
designed.

Normalization and De-duplication. To handle variations in ter-
minology across different papers, data normalization is applied to
ensure that semantically equivalent terms are merged appropriately
while filtering out non-informative entries.

The resulting KG provides the structured foundation for inter-
active exploration through a Streamlit application (Section 4.2).
Disease theories are stored as interconnected nodes with rich re-
lationship properties, which enables sophisticated queries about
disease mechanisms, evidence comparison across papers, and iden-
tification of knowledge gaps in the literature. This graph struc-
ture transforms isolated extracted data into a coherent, queryable

knowledge representation that supports the deeper understanding
of disease theories.

4 KnowDisease Implementation
To demonstrate the feasibility of the KnowDisease approach, an
implementation of the approach is provided (available on Github3).
The implementation consists of three main elements: (1) a multi-
stage backend processing pipeline; (2) the Neo4j graph database
for persistent storage; and (3) a Streamlit Web application that pro-
vides users intuitive access to the application features. The Streamlit
application provides a user-friendly interface for researchers to in-
teract with a knowledge base built from biomedical literature. Users
can submit papers for analysis and inclusion in the knowledge base,
explore extracted theories, and view causal diagrams illustrating dis-
ease relationships. All information is directly linked to supporting
evidence and source publications.

4.1 Disease Theory Population through the UI
Users can use KnowDisease UI to specify the publications for pop-
ulation of the disease theory graph database, either by uploading
biomedical scientific papers, or by specifying their PMIDs or dis-
ease name for remote database query. This input then activates
the backend pipeline, which processes documents through the five
sequential steps described in Section 3.2 and parses LLM output
into Neo4j database as a disease theory.

4.2 Disease Theory Exploration and Analysis
The UI provides pages for interactive exploration of the KG, visual-
ization of disease specific causal diagrams, and detailed examination
of evidence supporting each extracted element, facilitating deeper
understanding of disease mechanisms and progression.

The Disease theory KG page (Figure 2) visualizes the structured
disease theory knowledge base as an interactive network reflecting
the interconnected nature of biomedical knowledge development,
enabling researchers to explore complex relationships among dis-
eases, etiologies, treatments, biomarkers, diagnostics, and other
biomedical concepts. This graph-based interface supports cross-
paper integration and evidence accumulation, offering a compre-
hensive view of disease theories. This page also presents keymetrics
(such as total nodes and relationships in the Neo4j database) to con-
textualize the scope of the knowledge base. The graph is rendered
using PyVis4 and NetworkX5, preserving the structure of the Neo4j
database while enabling intuitive interaction. Disease nodes are
visually emphasized as central hubs, surrounded by color-coded
nodes representing related biomedical concepts, allowing users
to quickly recognize conceptual structures and identify patterns,
such as the density of treatment information linked to specific dis-
eases. The search feature on the page enables users to filter the
visualization by specific terms or concepts, supporting targeted
exploration. An organic discovery-oriented layout clusters related
concepts naturally, highlighting overlaps and complementarities
across studies.

3https://github.com/SINTEF-SE/KnowDisease
4https://pyvis.readthedocs.io/en/latest/
5https://networkx.org/
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Figure 2: Disease theory KG page.

A notable aspect of the visualization page is the integrated evi-
dence panel in the lower right part, which maintains the full trace-
ability chain from the extraction process. When a node is selected,
the panel displays its type, linked PMIDs, and the original tex-
tual evidence supporting its associated relationships. This ensures
transparency by allowing users to examine the exact sentences
and contextual information from source papers that underpin each
connection.

The Causal Diagram page (Figure 3) provides paper-specific visu-
alizations of disease theories where extracted concepts are arranged
by category and color. It highlights how individual papers relate
concepts to a disease, revealing their research focus. The causal
diagram is fully integrated with the KG and evidence traceabil-
ity and offers paper-specific insights, helping researchers assess
study scope, compare perspectives, and verify source text for each
concept.

Figure 3: Causal diagram forMelanoma.

5 Evaluation
5.1 Evaluation Framework
To evaluate KnowDisease, we created a baseline and a systematic
evaluation method.

5.1.1 Baseline. In the absence of a benchmark, we applied the
"LLM-as-a-Judge" approach [15], leveraging OpenAIs GPT-o3, Gem-
ini 2.5 Pro, and Claude Sonnet 3.7 to simulate expert biomedical
researchers. Each model extracted key concepts from 10 shared
baseline papers into a predefined Pydantic schema. The outputs
were cross-compared and consolidated into a single “silver truth”
per paper, providing an approximate but effective reference for
system performance evaluation.

5.1.2 Multi-metric approach and custom scoring metric. Multiple
metrics were selected for evaluation of system performance, includ-
ing precision, recall, processing time, F1 score and field specific
analysis. A custom F1 scoring function was developed to address
abbreviation handling, term specificity, and semantic overlap us-
ing a layered strategy with exponential penalties: exact matches
score fully; otherwise, semantic similarity (SimScore) guides scor-
ing. Terms with SimScore ≥ 0.9 (or ≥ 0.88 for abbreviations ≤ 3
characters) are accepted. Scores between 0.85–0.9 are penalized
based on substring overlap; 0.75–0.85 receive reduced weight (max
0.4); below 0.75 score zero. Parameters were empirically tuned for
optimal performance.

5.1.3 Optimization framework. Systematic optimization was ap-
plied using OptWuna [1], a hyperparameter optimization frame-
work that automatically searches for best system configurations
defined by a given metric. To explore a large parameter space, we
evaluated chunk sizes from 512 to 1408 tokens (step 128), overlaps
from 0 to 512, and top_k values from 2 to 7. Beyond retrieval settings,
we compared three schema designs (QA-based, keyword-based, and
natural language) and CoT vs. non-CoT extraction. Approximately
250 full-pipeline trials were run, providing a comprehensive assess-
ment of configuration impacts on system performance.

5.2 Evaluation Results
Figure 4 shows that CoT outperforms non-CoT, while CoT works
best with focused retrieval (k=3), and non-CoT improves with more
context until k=6.

2 3 4 5 6 7
0.4

0.5

0.6

0.7

Optimal CoT

Optimal Non-CoT

Top-k Value

F1
Sc
or
e

Impact of Top-k Retrieval on F1 Score

CoT
Non-CoT

Figure 4: Impact of Top-k Retrieval on F1 score.

The field-specific performance analysis (Figure 5) highlights vari-
ability in extraction difficulty across disease theory components,

5
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Figure 5: Field-specific F1 performance showing extraction
accuracy across different disease theory components.

reflecting the inherent complexity of biomedical knowledge struc-
tures. For example, CoT reasoning yields substantial performance
improvements in extracting etiological factors, achieving an F1
score of 0.78 compared to 0.35 for non-CoT approaches. This high-
lights the importance of step-by-step reasoning in distinguishing
causal relationships from loosely associated terms.

Our optimizations significantly enhanced the effectiveness of
semantic retrieval for disease theory extraction. Our evaluation re-
sults showed that replacing the general-purpose model all-MiniLM-
L6-v2with the domain-specific pritamdeka/S-PubMedBert-MS-MARCO
significantly improved retrieval precision over original pipeline.
In addition, approximately 250 Optuna trials revealed that disease
theory extraction required task-specific retrieval settings, with a
CoT-enabled configuration using 1024-token chunks and 192-token
overlap yielding superior performance compared to the original
pipeline defaults.

6 Conclusion
This paper introduced the KnowDisease approach to leverage the
power of LLMs and KGs to extract and analyze disease theories from
biomedical literature. By enhancing an existing LLM-based pipeline
with CoT prompting, the approach enables automatic extraction of
disease mechanisms and supporting evidence. By representing ex-
tracted structured information into KGs, the work supports deeper
analysis of disease mechanisms and therapeutic targets.

Thework contributes to AI-assisted scientific discovery by demon-
strating how to integrate LLM capabilities with evidence linking
and transparent reasoning, enabling verification and critical evalua-
tion over blind trust on LLM outputs. The work also contributes to
biomedical KG applications by aggregating evidence across multiple
sources with full provenance, yielding more robust and trustworthy
representations than simple, isolated fact extraction.

The approach has been evaluated using the KnowDisease imple-
mentation. One future work is to incorporate domain expert vali-
dation and feedback loop to enhance accuracy and enable ground
truth dataset creation. Another improvement is to design more
sophisticated causal diagrams to capture complex biological hierar-
chies. Deeper integration with biomedical ontologies could improve

terminology normalization and extraction specificity. Finally, task-
specific model fine-tuning, informed by expert feedback, presents a
path to further performance gains and iterative system refinement.
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