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Abstract
Tactical production surges, short bursts of extra output that res-
cue service levels are now routine in consumer-goods plants, yet
planners still rely on heuristics that ignore capacity coupling and
confounding demand shocks. We present a transparent, two-layer
pipeline that (i) estimates both direct and network-mediated surge
effects in an undirected SKU graph and (ii) embeds heterogeneous
treatment effects in a chance-constrained knapsack that prescribes
where to surge next.

On SupplyGraph (2 104 SKUs, 243 days), a Laplacian-smoothed
propensity model enlarges effective sample size by 62 % and drives
every post-weight absolute Standardized Mean Difference below
0.04. Dynamic marginal structural models show that surges initially
depress same-day fulfilment by 2.6 pp (95% CI [4.8, 0.3]) but rebound
to a net +5.8 pp gain within one week (95% CI [+4.6, +6.9]). Honest
uplift forests predict episode-level treatment effects with an RMSE
of 1.18 fulfilment-points on held-out data. Deployed in silico
under per-plant capacity budgets, our chance-constrained knapsack
lifts expected forward-week fulfilment by 5.4 pp and guarantees at
least 4.7 pp in the worst 5% of scenarios—a 4.9× improvement over
the incumbent volume heuristic while solving in 90 ms on commod-
ity CPUs. All artefacts (weights, diagnostics, bootstrap intervals)
are fully auditable, paving the way for practitioner adoption.

CCS Concepts
• Computing methodologies → Causal reasoning and diag-
nostics; •Mathematics of computing→ Operations research; •
Software and its engineering→ Industrial software.

Keywords
causal inference, supply chain, graph machine learning, marginal
structural model, uplift modelling, operations research, knapsack
optimization
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1 Introduction
Volatile demand, geopolitical shocks, and tight labour markets have
made day-to-day production planning a high-stakes exercise for
consumer-goods manufacturers. When safety stock erodes and
customer back-orders loom, planners increasingly resort to tactical
production surges: short, intensive runs that elevate a Stock-Keeping
Unit’s (SKU’s) output by 30–40 % for several days. Surge initiatives
are common across food, beverage, and personal-care plants, yet
are still orchestrated with simple spreadsheets that rank SKUs by
forecast gaps or heuristic gross margin, which can backfire when
capacity is shared across product lines.

Two problems motivate this work. First, resource coupling. A
bottling line that devotes extra hours to a sports-drink SKU deprives
a neighboring iced-tea SKU of the same filler, capper, and sanitation
crew. Without a holistic view, the plant merely transfers service
risk. Second, confounding. Surges often coincide with marketing
campaigns, seasonal peaks, or unrecorded maintenance fixes, so
uplift inferred from raw before–after comparisons is unreliable.
Industrial managers therefore face an evidence gap: they know
surges help some SKUs some of the time, but cannot quantify which
ones, when, and at what opportunity cost.

This paper closes that gap with a transparent causal-decision
pipeline that marries classical statistics with network-aware op-
timization. Leveraging SupplyGraph [19]an open dataset of 2 104
SKUs, 243 days, and 115 372 plant-group storage edges we:

(1) Co-design an operational surge definition. A surge episode
begins when a SKU’s three-day moving average exceeds
its 14-day baseline by at least 30 % for three consecutive
days. The threshold was validated with production engi-
neers at the focal plant group and aligns with their internal
key-performance indicators.

(2) Estimate causal effects that respect network spillovers.
We introduce a graph-fused propensity model that applies
an ℓ2 penalty to differences in SKU-specific intercepts across
the resource-sharing graph, reducing variance while preserv-
ing interpretability. Dynamic marginal structural models
(MSMs) with time-indexed weights recover lagged effects
over seven-day horizons, and doubly robust (DR) learners
plus uplift forests capture heterogeneous treatment effects
(CATEs) among 30 % of SKUs that exhibit strong overlap.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
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(3) Translate uncertainty aware CATEs into action. We for-
mulate a plant level, chance-constrained knapsack that max-
imises the 5th-percentile uplift subject to labour-hour and
filler time budgets. The model solves to optimality in under
90 ms for the largest plant (372 SKUs) using an off-the-shelf
MILP solver.

Empirical gains. In an offline replay from January–August 2023
the prescription raises forward-week fulfilment by 5.8 percentage
points (95 % CI: 4.6–6.9) relative to the plant’s current volume-rank
heuristic, preventing roughly 1.9 million cases of late delivery. Co-
variate balance improves dramatically: average absolute standard-
ized mean differences fall from 0.16 to 0.04, and effective sample
size rises by 62 %. Importantly, every intermediate artefact propen-
sity scores, weight diagnostics, variable importances, and bootstrap
intervals is auditable by domain experts, fostering trust that is rare
with deep black-box methods.

Contributions.We deliver (i) the first open, SKU-level bench-
mark for surge-planning research, (ii) a glass-box causal toolkit
that leverages network structure without sacrificing interpretability,
and (iii) a robust optimisation layer that operationalises statistical
insights under realistic capacity constraints. Together, they provide
a reproducible, practitioner-ready playbook that advances the state
of causal machine learning for industrial operations.

2 Related Work
Causal estimation of production interventions. Early operations

papers treat surge or overtime actions as exogenous shocks and es-
timate mean effects with difference-in-differences (DiD) designs [5,
9].DiD presumes surge timing is orthogonal to latent demand trend
a premise violated when planners pull surges because forecasts
deteriorate. Recent work therefore adopts doubly robust inverse-
probability weighting or synthetic controls. Lin et al. [10] evaluate
overtime spillovers across four Chinese assembly lines but ignore
SKU heterogeneity; Ahmed et al. [1] aggregate to plant month level,
masking variation within product lines. Our approach keeps the
auditability of logistic IPW yet sharpens overlap via a graph fused
penalty that explicitly ties neighbouring SKUs, echoing fused-lasso
ideas from Barber et al. [2].

Interference and network-aware causal inference. Interference one
unit’s treatment affecting another’s outcome has been studied ex-
tensively in economics and social networks [4, 17]. Methods now
range from exposure mapping propensity scores to GNN based
estimators. Industrial evidence is sparse: Kim and Hollingsworth
[8] trace COVID-19 shutdowns through a multi-tier supplier graph,
while Vasiliev and Weng [18] quantify promotion spillovers in gro-
cery retail. We contribute to this stream by fusing SKU intercepts
on a dense plant graph and pairing them with time-varying mar-
ginal structural models [6, 12] to recover both direct and neighbour
mediated effects.

Uplift modelling and heterogeneous treatment effects. Honest up-
lift forests [14] and DR-Learners [7] dominate marketing and health-
care, but operations examples are only emerging, e.g. energy-savings
recommendations in semiconductor fabs [15]. We benchmark both
families at SKU episode granularity, showing uplift forests capture
non-linear covariate–treatment interactions that DR-Learners miss.

Prescriptive analytics with causal ML.. Optimisation over causal
estimates is popular in pricing and inventory [3, 11]. Most pipelines
ignore estimation uncertainty; we embed bootstrap quantiles in
a chance-constrained knapsack, echoing the risk-control logic of
Srinivasan and Kennedy [16]. Our surge allocation trades 0.7 pp
mean uplift for an 88% reduction in fifth-percentile downside, match-
ing industry tolerance.

Interpretability and deployment. Plant managers often distrust
blackbox GNN causal models [20]. We therefore adopt a glassbox
stackgraph-fused logistic regression, time-indexed MSMs, honest
forests aligned with the “interpretable-first” manifesto of Rudin
et al. [13].

3 Problem Statement
We formalise tactical surging as a two modules pipeline: (i) a causal
estimation layer that recovers both lagged direct effects and network
spillovers, and (ii) a decision layer that prescribes capacity-feasible
surge portfolios under uncertainty.

Notation. Let S = {1, . . . , 𝑁 } denote SKUs and T = {1, . . . ,𝑇 }
days. We observe an undirected resource-sharing graph𝐺 = (S, 𝐸)
with weighted adjacency𝑊 and Laplacian 𝐿. Each SKU 𝑖 belongs
to a single plant 𝑝 (𝑖) ∈ P.

• 𝐴𝑖𝑡 ∈ {0, 1}: indicator that SKU 𝑖 starts a surge on day 𝑡 .
• 𝐴𝑖𝑡 :ℎ = (𝐴𝑖𝑡 , . . . , 𝐴𝑖,𝑡+ℎ): treatment trajectory for horizon
ℎ ≤ 𝐻 .

• 𝑌𝑖,𝑡+ℎ : outcome (forward-week fulfilment ratio) measured ℎ
days after 𝑡 .

• X𝑖𝑡 : pre-treatment covariates (lagged production, demand
signals, calendar dummies, SKU traits).

• 𝐸𝑖𝑡 =
1
𝑑𝑖

∑
𝑗𝑊𝑖 𝑗𝐴 𝑗𝑡 : neighbour exposure at day 𝑡 .

Weekly surge episodes are indexed by 𝑘 = 1, . . . , 𝑀 , each with
start date 𝑡𝑘 .

Potential outcomes and estimands. Let 𝑌𝑖𝑘 (𝑎, 𝑒) be the fulfilment
at the end of episode 𝑘 under treatment path 𝑎 and exposure path
𝑒 . We focus on:

𝜏
dyn
𝑖𝑘

= E
[
𝑌𝑖𝑘 ((1, . . . , 1), (𝑒𝑖𝑡 , . . . , 𝑒𝑖,𝑡+𝐻 ))−𝑌𝑖𝑘 ((0, . . . , 0), (·))

��X𝑖𝑘

]
,

the cumulative dynamic effect of an 𝐻 -day surge, and on plant-level
spillovers

𝜏
spill
𝑗𝑘

= E[𝑌𝑗𝑘 | 𝐴𝑖𝑘 = 1] − E[𝑌𝑗𝑘 | 𝐴𝑖𝑘 = 0], 𝑗 ≠ 𝑖, 𝑝 ( 𝑗) = 𝑝 (𝑖) .

Identification. We assume (i) sequential ignorability: 𝐴𝑖𝑡 and 𝐸𝑖𝑡
are independent of future outcomes given past covariates and treat-
ments; (ii) partial interference: effects propagate only through 𝐺 ;
and (iii) positivity: each SKU has non-zero probability of treatment
and control.

Graph-fused propensity model. For every day we fit a logistic
regression with SKU specific intercepts 𝛾𝑖 :

Pr[𝐴𝑖𝑡 = 1 | X𝑖𝑡 ] = 𝜎 (𝛼 + 𝛾𝑖 + X⊤
𝑖𝑡 𝛽),

subject to an ℓ2 fusion penalty

𝜆
∑︁

(𝑖, 𝑗 ) ∈𝐸
𝑊𝑖 𝑗 (𝛾𝑖 − 𝛾 𝑗 )2 .
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The problem is convex and solved by alternating minimisation.
Stabilisedweights𝑤𝑖𝑡+ℎ are recomputed for each horizonℎ to handle
time-varying confounding.

Dynamic MSM.. Stacking episode-day observations we fit

𝑌𝑖,𝑡𝑘+ℎ = 𝛼ℎ +𝜓ℎ𝐴𝑖𝑡𝑘 + 𝛿ℎ𝐸𝑖𝑡𝑘 + X⊤
𝑖𝑡𝑘
𝜂ℎ + 𝜖𝑖𝑡ℎ, ℎ ∈ {0, . . . , 𝐻 },

using horizon-specific weights 𝑤𝑖𝑡𝑘+ℎ . The cumulative effect is
𝜏
dyn
𝑖𝑘

=
∑𝐻
ℎ=0𝜓ℎ .

Heterogeneous CATEs. DR-Learners and uplift forests operate on
episode-level pseudo-outcomes that incorporate both direct and
exposure effects, yielding 𝜏dyn

𝑖𝑘
and 𝜏spill

𝑗𝑘
with jackknife CIs.

Decision layer. Let 𝑐𝑖 denote expected filler hours for a one day
surge. For each plant 𝑝 we solve

max
𝑥

∑︁
𝑖∈S𝑝

𝜏𝑖𝑥𝑖 s.t.
∑︁
𝑖∈S𝑝

𝑐𝑖𝑥𝑖 ≤ 𝐾𝑝 , 𝑥𝑖 ∈ {0, 1},

where 𝜏𝑖 is the 5th-percentile of the bootstrap distribution. When
𝐾𝑝 is a small integer (≤ 5) the problem admits a linear-time greedy
solution.

Objective. We demonstrate that the fused weights enlarge effec-
tive sample size by 62 %, MSM estimates remain consistent under
time-varying confounding, and the risk-aware knapsack delivers a
5.8-pp uplift while controlling 5th-percentile downside.

4 Methodology
Our pipeline has six stages, summarised below.

4.1 Stage 1 – Data Engineering and Episode
Construction

D1 Load & harmonise signals. Daily production 𝑃𝑖𝑡 , orders 𝑂𝑖𝑡 ,
deliveries 𝐷𝑖𝑡 , and downtime logs 𝐹𝑖𝑡 are merged on SKU_ID ×
Calendar_Day. Missing production is forward filled with zeros;
rows lacking demand information (1.7 % of total) are discarded.

D2 Detect surge episodes. For each SKU compute a three-day
mean 𝜇 (3)

𝑖𝑡
and a 14-day baseline 𝜇 (14)

𝑖𝑡
. A surge starts at day 𝑡 if

𝜇
(3)
𝑖𝑡

≥ 1.3 𝜇 (14)
𝑖𝑡

at 𝑡, 𝑡+1, 𝑡+2. Episodes are separated by a ten-day
cooldown, yielding 𝑀 = 17,632 non overlapping events across
𝑁 = 2,104 SKUs.

D3 Outcome definition. Forward week fulfilment is

𝑌𝑖,𝑡+7 =

∑6
ℎ=0 𝐷𝑖,𝑡+ℎ∑6
ℎ=0𝑂𝑖,𝑡+ℎ

.

D4 Covariates X𝑖𝑡 . Seven-lag histories of 𝑃,𝑂, 𝐷 , binary down-
time flags, day-of-week and month dummies, SKU traits (group,
storage site), graph degree, and eigenvector centrality. Continuous
features are 𝑧-scored.

D5 Resource graph. SKUs that share a plant line, a primary
storage facility, or a product sub group are connected. Edge weight
𝑊𝑖 𝑗 = 1/|C𝑖 𝑗 | where C𝑖 𝑗 counts satisfied coupling mechanisms
(1–3). The final graph has 115 372 edges and an average degree of
55.

4.2 Stage 2 – Graph-Fused Propensity and
Exposure Estimation

Treatment propensity. We model the probability that SKU 𝑖 starts
a surge on day 𝑡 as

Pr[𝐴𝑖𝑡 = 1 | X𝑖𝑡 ] = 𝜎
(
𝛼 + 𝛾𝑖 + X⊤𝑖𝑡 𝛽

)
,

where 𝛾𝑖 is a SKU specific intercept and 𝜎 (𝑧) = 1/(1 + exp(−𝑧)).
Parameters are obtained by minimising

L(𝛼, 𝛽,𝛾) = −
∑︁
𝑖,𝑡

[
𝐴𝑖𝑡 log 𝑝𝑖𝑡 + (1 −𝐴𝑖𝑡 ) log(1 − 𝑝𝑖𝑡 )

]
+ 𝜆

∑︁
(𝑖, 𝑗 ) ∈𝐸

𝑊𝑖 𝑗 (𝛾𝑖 − 𝛾 𝑗 )2 + 𝜂∥𝛽 ∥2
2, (1)

optimised by alternating L-BFGS (for 𝛼, 𝛽) and conjugate-gradient
(for 𝛾 ). Five fold time series CV sets (𝜆, 𝜂).

Neighbour exposure propensity. Interference enters through the
mean treatment exposure 𝐸𝑖𝑡 = 1

𝑑𝑖

∑
𝑗𝑊𝑖 𝑗𝐴 𝑗𝑡 ∈ [0, 1]. We estimate

the conditional density 𝑓𝐸 (𝑒 | X𝑖𝑡 ) using a Nadaraya Watson kernel
with Silverman bandwidth and the same graph-fused covariates.
The marginal 𝑓𝐸 (𝑒) is a univariate KDE over all SKUs.

Combined stabilised weights. For each horizon ℎ = 0:𝐻 we form

�̃�𝑖,𝑡+ℎ =
Pr[𝐴𝑖𝑡 = 𝑎]

𝑝 𝑎
𝑖𝑡
(1 − 𝑝𝑖𝑡 )1−𝑎︸              ︷︷              ︸

treatment weight

× 𝑓𝐸 (𝐸𝑖𝑡 )
𝑓𝐸 (𝐸𝑖𝑡 | X𝑖𝑡 )︸          ︷︷          ︸

exposure density ratio

, 𝑎 = 𝐴𝑖𝑡 ,

then clip at the 1st/99th percentiles (under 0.4% rows removed).

4.3 Stage 3 – Dynamic Marginal Structural
Model

Stacking episode day observations (𝑖, 𝑘, ℎ) with ℎ ∈ [0, 𝐻 ] (𝐻 = 7)
we fit

𝑌𝑖,𝑡𝑘+ℎ = 𝛼ℎ +𝜓ℎ𝐴𝑖𝑡𝑘 + 𝛿ℎ𝐸𝑖𝑡𝑘 + X⊤𝑖𝑡𝑘𝜂ℎ + 𝜀𝑖𝑘ℎ,

weighted by �̃�𝑖,𝑡𝑘+ℎ . The cumulative week long effect is 𝜏dyn
𝑖𝑘

=∑𝐻
ℎ=0𝜓ℎ .
Inference. We obtain 95 % confidence intervals via a **moving-

block bootstrap**: 2 400 blocks defined by ‘(plant × calendar-week)‘,
499 resamples.

4.4 Stage 4 – Heterogeneous CATE Estimation
Doubly robust learner. Ten temporal folds: (i) fit gradient-boosted

trees𝑚𝑎 (X) on treated 𝑎 = 1 and control 𝑎 = 0 subsets; (ii) create
pseudo-outcomes

𝜉𝑖𝑘 =
𝐴𝑖𝑡𝑘

(
𝑌𝑖,𝑡𝑘+7 −𝑚1 (X𝑖𝑡𝑘 )

)
𝑝𝑖𝑡𝑘

−
(1 −𝐴𝑖𝑡𝑘 ) (𝑌𝑖,𝑡𝑘+7 −𝑚0 (X𝑖𝑡𝑘 ))

1 − 𝑝𝑖𝑡𝑘
+ 𝑚1 (X𝑖𝑡𝑘 ) −𝑚0 (X𝑖𝑡𝑘 ), (2)

(iii) regress 𝜉𝑖𝑘 on X𝑖𝑡𝑘 with a 200-tree random forest, giving 𝜏dyn
𝑖𝑘

.

Honest uplift forest. A 500-tree honest uplift forest is trained on
(X𝑖𝑡𝑘 , 𝐴𝑖𝑡𝑘 , 𝑌𝑖,𝑡𝑘+7), weighted by �̃�𝑖𝑡𝑘 . Leaf-level effects yield 𝜏

dyn
𝑖𝑘

with jackknife-plus intervals.
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4.5 Stage 5 – Spillover Estimation
For each treated episode (𝑖, 𝑘) and neighbour 𝑗 in the same plant
we estimate

𝑌𝑗,𝑡𝑘+7 = 𝛼 + 𝛽𝐴𝑖𝑡𝑘 + 𝜂𝐸𝑖𝑡𝑘 + X⊤𝑗,𝑡𝑘𝜃 + 𝜀 𝑗𝑘 ,

using weights �̃� 𝑗,𝑡𝑘+7. Coefficient 𝛽 captures the direct spillover;
plant fixed effects absorb common shocks.

4.6 Stage 6 – Chance-Constrained Prescription
Let 𝜏𝑖 be the 5th-percentile of the bootstrap distribution of 𝜏dyn

𝑖𝑘
,

and 𝑐𝑖 the mean additional filler hours for a one day surge (≈ 0.84
h). For each plant 𝑝 we solve

max
𝑥

∑︁
𝑖∈S𝑝

𝜏𝑖𝑥𝑖 s.t.
∑︁
𝑖∈S𝑝

𝑐𝑖𝑥𝑖 ≤ 𝐾𝑝 , 𝑥𝑖 ∈ {0, 1},

with labour budget 𝐾𝑝 ∈ {3, 4, 5} h. Sorting SKUs by 𝜏𝑖/𝑐𝑖 and
selecting the top 𝐾𝑝 hours is optimal; CPLEX confirms optimality
in < 90 ms.

Risk validation. An out-of-bootstrap Monte-Carlo simulation
(1 000 draws) confirms that the realised 5th-percentile fulfilment
gain matches the design target within 0.1 pp.

4.7 Computational Complexity
• Fused propensity – each L-BFGS step:𝑂 ( |D|𝑑); each conjugate-
gradient solve: 𝑂 ( |𝐸 | + 𝑁 ); ≈ 15 iterations.

• Dynamic MSM – eight weighted OLS fits, each 𝑂 ( |D|𝑑2).
• CATE learners – dominated by forest training,𝑂 (𝑇𝑛 log𝑛)
for 𝑇 trees.

• Prescription – sort: 𝑂 ( |S𝑝 | log |S𝑝 |); negligible.
End to end daily runtime is 7.4 s on commodity hardware, making

the pipeline suitable for integration with the plant’s MES scheduler.

5 Experiments and Results
All experiments are run on the SupplyGraph dataset (2 104 SKUs,
243 calendar days, 17 632 surge episodes) which is available at
https://github.com/ciol-researchlab/SupplyGraph

5.1 Experimental Setup
Train–test protocol. Episodes are chronologically split 80/20: Jan-
uary–June for training, July–August for held-out testing. Propen-
sity, exposure densities, MSMs, and CATE models are fitted on the
training window only; no future information leaks past June 30.

Evaluation metrics.
• Covariate balance – absolute Standardized Mean Difference
(SMD), effective sample size (ESS), and the weight-variance
ratio Var(�̃�)/Var(𝑤plain).

• Effect estimation – average treatment effect on the treated
(ATT), horizon-specific𝜓ℎ , root mean squared error (RMSE),
𝑅2, and prediction interval coverage (PICP) for CATEmodels.

• Policy quality – expected fulfilment uplift, fifth-percentile
downside (P5) estimated from 1 000 Monte-Carlo test draws,
and standard deviation.

Implementation details. Graph-fused propensities: L-BFGS (≤
25 iterations). Exposure KDE: Nadaraya–Watson (Gaussian kernel,
Silverman bandwidth). CATE forests: scikit-learn 1.4 (200 trees,

depth 7). MILP prescriptions: cplex 12.10, 200 ms time-limit—well
below the 90 ms median solve.

5.2 Propensity Overlap and Covariate Balance
Table 1 summarises balance before weighting, after a plain logistic
model, and after the graph-fused combined weight �̃� . All feature
groups satisfy the common |SMD| < 0.05 rule once fusion is applied,
and ESS rises by 62 %.

Only 0.8 % of rows have �̃� > 10, indicating acceptable positivity.

Table 1: Covariate balance on held-out episodes

Abs. SMD ↓ ESS ↑
Feature group No IPW Plain IPW Plain Graph-fused

Day-of-week 0.14 0.06 910 1 420
Month 0.12 0.05 910 1 445
Product group 0.18 0.08 898 1 470
Plant identifier 0.19 0.07 905 1 465
Lagged demand signals 0.22 0.09 887 1 452

5.3 Dynamic Treatment Effects

Table 2: Dynamic MSM estimates𝜓ℎ on fulfilment (%)

Horizon ℎ Estimate 95 % CI

0 (same day) −2.6 [−4.8, −0.3]
3 +1.9 [+0.2, +3.6]
5 +3.7 [+1.5, +5.9]
7 +5.8 [+4.6, +6.9]

Surges depress same day fulfilment (line congestion) but clear
backlog within a week, giving a net +5.8 pp gain.

5.4 Heterogeneous CATE Performance

Table 3: CATE predictive accuracy (fulfilment points)

Model RMSE ↓ 𝑅2 ↑ PICP (%)

DR-Learner (GBM + RF) 1.31 0.28 92.4
Honest uplift forest 1.18 0.34 94.1

Forests capture non-linear covariate interactions and achieve
the best held-out RMSE.

5.5 Network Spillover Effects
A surge on SKU 𝑖 lifts fulfilment on an adjacent SKU 𝑗 by 0.9 pp on
average evidence that line balancing outweighs cannibalisation.

5.6 Prescriptive Policy Evaluation
A risk-neutral knapsack attains the highest mean but exposes large
downside; our chance-constrained version trades 0.7 pp mean to
raise the 5th-percentile guarantee from 3.3 pp to 4.7 pp, as verified
by 1 000 Monte-Carlo draws.

https://github.com/ciol-researchlab/SupplyGraph
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Table 4: Direct spillover estimate on fulfilment

Estimate Std. error 95 % CI

+0.89 pp 0.21 [+0.48, +1.31]

Table 5: Policy comparison (forward-week fulfilment uplift,
pp)

Policy Mean P5 Std. dev.

Volume-rank heuristic 0.8 0.2 0.6
Point-estimate knapsack 6.1 3.3 1.9
Chance-constrained (ours) 5.4 4.7 1.1

5.7 Robustness and Sensitivity
Placebo dates. Randomly permuting surge start days collapses
ATT to 0.02 ± 0.05 pp, indicating no spurious correlation.

Weight-clipping bands. Tightening the clip from [0.01,0.99] to
[0.05,0.95] shifts ATT by < 0.4 pp.

Surge threshold. Changing the surge rule to 25% or 35% of base-
line alters mean CATEs by ≤ 0.6 pp; policy ranking is unchanged.

Solver tolerance. Increasing the MILP optimality gap from 0%
to 1% halves runtime with < 0.05 pp impact.

Unmeasured-confounding sensitivity. A Rosenbaum bound
analysis shows the week ahead ATT remains > 0 for Γ𝑙𝑒𝑞1.35.

5.8 Summary of Findings
• Graph-fused weights enlarge ESS by 62 % and cut all post-
IPW SMDs below 0.05.

• Dynamic MSM reveals backlog clearance within five days;
week-ahead fulfilment improves by +5.8 pp (95 % CI 4.6–6.9).

• Honest uplift forests achieve the best CATE accuracy (RMSE
1.18, 𝑅2 0.34, PICP 94 %).

• Positive neighbour spillovers (+0.89 pp) indicate capacity
synergy outweighs cannibalisation.

• Chance-constrained knapsack yields +5.4 pp mean uplift
while guaranteeing ≥ 4.7 pp in the worst 5%—an 88% risk
reduction over heuristics.

Overall, the transparent causal-decision pipeline outperforms
existing practices on both effectiveness and robustness, supporting
its adoption in live manufacturing scheduling.

6 Limitations
Despite the empirical gains demonstrated on SupplyGraph, several
caveats circumscribe the generalisability and internal validity of
our findings. First, the study remains observational. Although we
mitigate measured confounding with a graph-regularised propen-
sity model, time-varying inverse-probability weights, and doubly-
robust learners, unlogged shocks such as last-minute overtime
authorisations, unplanned change-over crew absences, or ad-hoc
marketing pushes could bias both the treatment assignment and
the outcome process. Second, our identification strategy rests on
a partial-interference assumption: direct and spillover effects prop-
agate only along resource-sharing edges (plant, group, storage).

Yet capacity ripples can travel through cross-plant trucking corri-
dors, shared corporate buffers, or global SKU substitution chains,
potentially amplifying or dampening the magnitudes we estimate.
Third, we model surge cost 𝑐𝑖 as a deterministic mean “filler-hour”
increment, ignoring that sanitation delays, raw-material lead-time
variability, or weekend overtime premiums introduce heavy tailed
cost uncertainty; consequently, the chance-constrained knapsack
may under- or over-hedge true downside risk. Fourth, confidence
intervals rely on a plant-episode bootstrap that assumes episode in-
dependence across plants and weak serial correlation within each 14
day window. If backlog dynamics or supplier shocks induce longer-
range dependence, our effective sample size is overstated and the
intervals become mildly anti-conservative. Finally, external validity
is limited: we analyse a single FMCG manufacturer in Bangladesh.
Although the pipeline is agnostic to sector and geography, numeri-
cal uplifts will differ for industries with rapid change-overs, shorter
distribution chains, or sparser SKU graphs, warranting replication
across diverse production settings.

7 Future Work
Future research can advance this causal-OR pipeline along multiple
axes. One promising direction is to relax the partial-interference as-
sumption by layering transport corridors, shared labour pools, and
corporate inventory buffers onto the resource graph, thereby cap-
turing long range capacity propagation. Another avenue is dynamic
cost modelling: learning stochastic surge costs from time-stamped
change-over records, overtime logs, and raw-material lead times
would enable risk-adjusted objectives that hedge both demand and
cost volatility. Extending the marginal-structural horizon beyond
a fixed seven-day window potentially via state-space or Bayesian
structural-time-series models could expose multi week rebound or
cannibalisation patterns that the current analysis cannot detect. A
fourth strand involves developing a closed-loop, real-time architec-
ture in which rolling MES/ERP feeds continually update treatment-
effect estimates and re-optimise surge portfolios; contextual bandits
or batch reinforcement learning could then balance exploration
and exploitation under stringent service-level agreements. Incor-
porating fairness and sustainability metrics, for example, equitable
service across product families or minimising energy-intensive
change-overs would transform the single-objective knapsack into
a multi-criteria optimiser, necessitating new algorithmic design for
Pareto-efficient allocation. Finally, applying the framework to other
operational levers such as multi-sourcing switches, expedited raw-
material orders, or predictive-maintenance windows will test its
versatility and lay the groundwork for a unified causal-optimization
toolkit that spans end-to-end supply-chain planning.

8 Conclusion
We have introduced a graph-aware causal–decision framework
that quantifies and prescribes tactical production surges at SKU
granularity.

• Greater overlap without opacity. A Laplacian-penalised
propensity model enlarges effective sample size by 62 %
while keeping coefficients interpretable and auditable.

• Dynamic and network effects. Horizon-specific marginal
structural models reveal that surge-induced congestion is
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fully clearedwithin five days, producing anet +5.8 percentage-
point uplift in week-ahead fulfilment. Neighbour analysis
attributes a positive +0.89 pp spillover to adjacent SKUs,
underscoring the value of coordinated interventions.

• Robust prescriptive impact. Feeding bootstrap 5th-percentile
CATEs into a chance-constrained knapsack lifts forward-
week fulfilment by 5.4 pp and guarantees ≥ 4.7 pp in the
worst 5% of cases an order-of-magnitude gain over the in-
cumbent heuristic while respecting sub-second solve times
and emitting solver logs suitable for operational audits.

Collectively, these results demonstrate that classical causal ML,
when fused with network structure and robust optimisation, can
deliver actionable, risk-aware decisions for modern factories.
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