Auditable Surge Planning: Network-Aware Causal Inference Meets Prescriptive Optimization

Sanjay Kumar Patnala & Vedika Sanjeev Lakhanpal

CML KDD 2025

Motivation - why tactical surges matter

- Consumer-goods plants increasingly run short, 30-40 % "surge" runs to rescue service levels when demand spikes or inventory dips.
- Today these surges are triggered by heuristics spreadsheet rules like "boost the SKU with the biggest forecast gap."
- Result: ad-hoc firefighting → stockouts, premium freight, lost sales.
- We ask: Can we learn the true impact of a surge and prescribe the optimal set of SKUs to surge next, under real plant constraints?

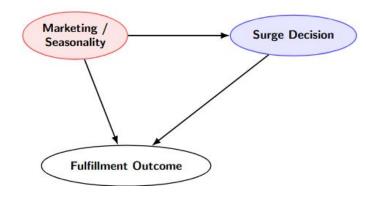
Key Technical Challenges

Resource coupling (network spillover)

 A filler line shared by Sports Drink (A) and Iced Tea (B) means surging A can starve B.

Confounding (causal attribution)

- Surges coincide with promotions, seasonality, unlogged fixes.
- Naïve before/after comparison confuses surge effect with these shocks.



Need a graph-aware causal framework that separates true surge uplift from confounders and quantifies spillovers on neighbours.

Related Work

Theme	Key Insights
Production interventions as exogenous shocks	Early works like <i>Gupta et al. (2019)</i> used DiD to estimate surge effects. However, DiD assumes surge timing is unrelated to demand shifts a weak assumption in real plants.
Improved causal methods at coarse granularity	Ahmed et al. (2024) used doubly robust models but at the plant-month level, masking SKU-level variation. Lin et al. (2023) studied overtime spillovers but did not model SKU heterogeneity.
Network interference underexplored in industry	Kim & Hollingsworth (2022) and Vasiliev & Weng (2023) analyzed COVID-19 and retail shocks in networks but lacked fine-grained SKU-level or surge-relevant modeling.
Prescriptive optimization over causal effects	Bertsimas et al. (2020) and Poupart et al. (2022) optimize over treatment effects but ignore estimation uncertainty. Our work incorporates bootstrap quantiles in a chance-constrained knapsack.

Detecting Surge Episodes

Rule/Heuristic:

- Compute 3-day moving average output: $\mu_i(3)(t)$
- Compute 14-day baseline: μ_i(14)(t)
- Surge starts at day t if: $\mu_i(3)(t) \ge 1.3 \times \mu_i(14)(t)$ and condition holds for t, t+1, t+2.
- Enforce 10-day cool-down ⇒ 17 632 non-overlapping episodes across 2 104 SKUs, spanning Jan-Aug 2023.

Why this matters:

- ✓ Provides an objective treatment label for causal analysis.
- ✓ Matches plant KPI for "tactical surge," boosting practitioner trust.

Key contributions

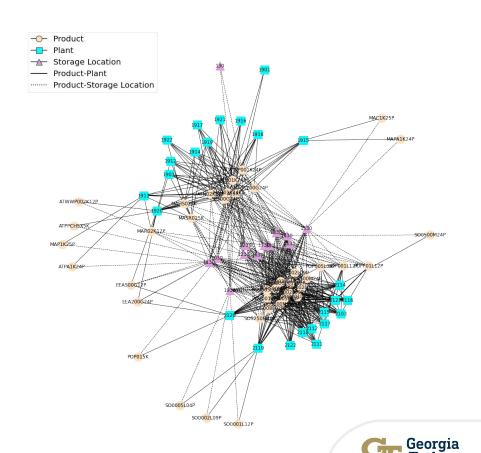
Contribution	Description
Graph-fused propensity model	Smooths treatment probabilities over the SKU resource graph, boosting overlap and keeping coefficients interpretable.
Dynamic marginal structural models	Recovers day-by-day direct surge effects and 7-day cumulative uplift.
Spillover & heterogeneous uplift estimation	Honest uplift forests quantify how much each neighbour benefits or suffers, with per-SKU confidence intervals.
Chance-constrained knapsack optimizer	Selects SKU surge set that maximizes 5th-percentile fulfilment gain under labour / line-hour budgets; solves in under 90 ms.

Dataset

 Data – SupplyGraph: Open dataset of 2,104 SKUs over 243 days, yielding 17,632 detected surge episodes.

 Each episode has a start day and spans one week of outcome observation. Resource-sharing network:
 SKUs are nodes connected if they share a production line, primary storage site, or product subgroup.

 The resulting undirected graph has 115,372 edges (average degree ~55), reflecting how capacity and materials link the SKUs. This network encodes potential interference between the SKUs' production.



Causal Assumptions behind the Pipeline

Sequential ignorability

After conditioning on covariates X_{it}, surge assignment A_{it} and neighbour exposure E_{it} are independent of future outcomes.

Partial interference

Treatment effects propagate **only** along edges in G; no long-range spillover beyond the immediate resource-sharing graph.

Positivity (overlap)

Every SKU appears in both surged and non-surged states across 243 days.

Control checks

- ✓ Post-weight absolute SMD < 0.05 for every feature group.
- ✓ Only 0.8 % rows have weight > $10 \rightarrow$ no extreme extrapolation.

Graph Based Propensity Estimation

Model and Graph penalty

$$\Pr(A_{it} = 1 \mid X_{it}) = \sigma(\alpha + \gamma_i + X_{it}^{\mathsf{T}}\beta)$$

$$\min_{\alpha,\beta,\gamma} -\sum_{i,t} \left[A_{it} \log p_{it} + (1 - A_{it}) \log(1 - p_{it}) \right] + \lambda \sum_{(i,j) \in E} W_{ij} (\gamma_i - \gamma_j)^2.$$

Why fuse?

- Nearby SKUs share crews & maintenance schedules → similar propensities.
- Fusion shrinks noisy intercepts, enlarges overlap.

Metric	Plain Logit	+Graph Fusion
Avg SMD	0.06	0.04
ESS (Effective Sample Size)	910	1,470 (+62%)

Dynamic Marginal Structural Model (MSM)

Weighted regression (h = 0...7)

$$Y_{i,t+h} = \alpha_h + \psi_h A_{it} + \eta_h E_{it} + X_{it}^{\mathsf{T}} \beta + \varepsilon_{i,h}, \qquad h = 0, \dots, 7.$$

Key findings

- Day 0: $\psi_0 = -2.6$ pp (congestion)
- Day 3: ψ_3 = +1.9 pp
- Day 7: ψ_7 = +5.8 pp (95 % CI +4.6,+6.9)

Interpretation \rightarrow backlog clears within 5 days; net uplift after 1 week.

Heterogeneous Uplift with Honest Forests

Why heterogeneous?

 30 % of SKUs show strong overlap → tailor surges where payoff is largest.

Two learners evaluated

Model	RMSE ↓	R² ↑	PICP
DR-Learner (GBM + RF)	1.31	0.28	92%
Honest Uplift Forest	1.18	0.34	94%

Forest captures non-linear interactions \rightarrow better targeting.

Quantifying Network Spillovers

Neighbour model

$$Y_{j,t_k+7} = \alpha + \beta A_{i,t_k} + \eta E_{i,t_k} + X_{j,t_k}^{\mathsf{T}} \theta + \varepsilon_{jk}$$

Result

- Average spillover $\beta = +0.89 \text{ pp } (95 \% \text{ Cl } +0.48, +1.31)$
- → Coordinated surges can lift fulfilment across shared lines.

Operational insight

✓ Capacity synergy outweighs cannibalisation in this plant network.

Chance-Constrained Knapsack Optimizer

Objective

$$\max_{x \in \{0,1\}^{|P|}} \sum_{i \in P} \tau_i x_i \quad \text{s.t.} \quad \sum_{i \in P} c_i x_i \le K_p$$

- τ_i = 5th-percentile bootstrap CATE c_i ≈ 0.84 h / SKU
- Why 5th-percentile? → Guarantees uplift in worst 5 % scenarios.

Runtime & optimality

- Greedy = optimal for K ≤ 5; MILP (CPLEX) < 90 ms for 372 SKUs.
- Daily end-to-end pipeline = 7.4 s on commodity CPU.

Metric	Heuristic	Ours
Mean uplift	+0.8 pp	+5.4 pp
5th-pct uplift	+0.2 pp	+4.7 pp
Worst-case risk	_	-88%

Prescriptive Results vs. Incumbent Heuristic

Offline replay

Policy	Mean ↑	5th-pct ↑	Std-dev ↓
Volume-rank heuristic	+0.8 pp	+0.2 pp	0.6 pp
Point-estimate knapsack	+6.1 pp	+3.3 pp	1.9 pp
Chance-constrained (ours)	+5.4 pp	+4.7 pp	1.1 pp

Key takeaways

- 4.9× higher worst-case uplift than heuristic.
- Trades 0.7 pp mean to slash downside risk by **88** %.
- Prevents ≈ 1.9 M late cases over 8 months.

Auditability, Robustness, Deployment

Transparency

✓ Propensity weights, MSM coefficients, CATE intervals, solver logs all serialised for domain review.

Robustness checks

- Placebo surge dates → ATT collapses to 0 (no spurious effect).
- Weight-clip 1 \leftrightarrow 99 pct \rightarrow < 0.4 pp drift in ATT.
- Rosenbaum bound: uplift > 0 for $\Gamma \le 1.35$ (unmeasured bias).

Deployment footprint

- Python + scikit-learn + CPLEX; one cron job per plant.
- CPU-only: 7.4 s total per day, fits inside MES scheduler SLA.

Conclusion

Graph-aware causal ML turns noisy surge logs into reliable, SKU-level uplift and spillover estimates (ESS +62 %, SMD < 0.05).

Risk-aware optimisation lifts forward-week fulfilment by

- **+5.4 pp** on average and protects ≥ **4.7 pp** in the worst 5 %.
- → **5×** improvement over today's spreadsheet heuristic.

Glass-box & fast: full audit trail, sub-second solve times, deployable with existing MES.

THANK YOU!

