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Motivation - why tactical surges matter

« Consumer-goods plants increasingly run short, 30-40 % “surge” runs
to rescue service levels when demand spikes or inventory dips.

» Today these surges are triggered by heuristics — spreadsheet rules
like “boost the SKU with the biggest forecast gap.”

« Result: ad-hoc firefighting — stockouts, premium freight, lost sales.

« We ask: Can we learn the true impact of a surge and prescribe the
optimal set of SKUs to surge next, under real plant constraints?
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Key Technical Challenges

Resource coupling (network spillover)

o Afiller line shared by Sports Drink (A) and Iced Tea
(B) means surging A can starve B.

Confounding (causal attribution)

e Surges coincide with promotions, seasonality,
unlogged fixes.

o Naive before/after comparison confuses surge
effect with these shocks.

Need a graph-aware causal framework that separates
true surge uplift from confounders and quantifies
spillovers on neighbours.
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Related Work

Theme

Key Insights

Production interventions as exogenous shocks

Early works like Gupta et al. (2079) used DiD to
estimate surge effects. However, DiD assumes
surge timing is unrelated to demand shifts a weak
assumption in real plants.

Improved causal methods at coarse granularity

Ahmed et al. (2024) used doubly robust models
but at the plant-month level, masking SKU-level
variation. Lin et al. (2023) studied overtime

spillovers but did not model SKU heterogeneity.

Network interference underexplored in industry

Kim & Hollingsworth (2022) and Vasiliev & Weng
(2023) analyzed COVID-19 and retail shocks in
networks but lacked fine-grained SKU-level or
surge-relevant modeling.

Prescriptive optimization over causal effects

Bertsimas et al. (2020) and Poupart et al. (2022)
optimize over treatment effects but ignore
estimation uncertainty. Our work incorporates
bootstrap quantiles in a chance-constrained
knapsack.
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Detecting Surge Episodes

Rule/Heuristic :

- Compute 3-day moving average output: pi(3)(t)

- Compute 14-day baseline: pi(14)(t)

* Surge starts at day tif: pi(3)(t) = 1.3 x pi(14)(t) and condition holds for t, t+1, t+2.

* Enforce 10-day cool-down = 17 632 non-overlapping episodes
across 2 104 SKUs, spanning Jan—Aug 2023.

Why this matters:

v Provides an objective treatment label for causal analysis.
v Matches plant KPI for “tactical surge,” boosting practitioner trust.
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Key contributions

Contribution Description

Graph-fused propensity model Smooths treatment probabilities over the
SKU resource graph, boosting overlap and
keeping coefficients interpretable.

Dynamic marginal structural models Recovers day-by-day direct surge effects
and 7-day cumulative uplift.

Spillover & heterogeneous uplift estimation Honest uplift forests quantify how much
each neighbour benefits or suffers, with
per-SKU confidence intervals.

Chance-constrained knapsack optimizer Selects SKU surge set that maximizes
Sth-percentile fulfilment gain under labour /
line-hour budgets; solves in under 90 ms.
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Dataset

e Data — SupplyGraph: Open dataset of 2,104 SKUs over
243 days, yielding 17,632 detected surge episodes.

e Each episode has a start day and spans one week of
outcome observation. Resource-sharing network:
SKUs are nodes connected if they share a production
line, primary storage site, or product subgroup.

e The resulting undirected graph has 115,372 edges
(average degree ~55), reflecting how capacity and
materials link the SKUs. This network encodes
potential interference between the SKUs' production.
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Causal Assumptions behind the Pipeline

Sequential ignorability

After conditioning on covariates X_{it}, surge assignment A_{it} and neighbour
exposure E_{it} are independent of future outcomes.

Partial interference

Treatment effects propagate **only** along edges in G; no long-range spillover beyond
the immediate resource-sharing graph.

Positivity (overlap)

Every SKU appears in both surged and non-surged states across 243 days.
Control checks
v Post-weight absolute SMD < 0.05 for every feature group.

v Only 0.8 % rows have weight > 10 — no extreme extrapolation.
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Graph Based Propensity Estimation

Model and Graph penalty

Pr(4ix = 1| Xae) = o{c+ % + X3,5)

glgn — [Ait logpy + (1 — Ay log(1.— Pz't)] + A Z Wis (% — 13)%
By P (i.9)EE
Why fuse?

* Nearby SKUs share crews & maintenance schedules — similar propensities.

* Fusion shrinks noisy intercepts, enlarges overlap.

Metric Plain Logit +Graph Fusion

Avg |SMD] 0.06 0.04

ESS (Effective Sample

o
Size) 910 1,470 (+62%)
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Dynamic Marginal Structural Model (MSM)

Weighted regression (h = 0...7)
Y:i,t+h == ah+¢hAit+nhEit+X;l;/[))+6i,ha h,:O,...,,?.

Key findings
* Day 0: , = -2.6 pp (congestion)
*Day 3: 9, =+1.9 pp
*Day 7: @, =+5.8 pp (95 % Cl +4.6,+6.9)

Interpretation — backlog clears within 5 days; net uplift after 1 week.
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Heterogeneous Uplift with Honest Forests

Why heterogeneous?

o 30 % of SKUs show strong overlap — tailor surges where payoff is
largest.

Two learners evaluated

Model RMSE | Rz 1 PICP

DR-Learner (GBM + 131 0.28 929%
RF)

Honest Uplift Forest 1.18 0.34 94%

Forest captures non-linear interactions — better targeting.
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Quantifying Network Spillovers

Neighbour model

Yisar = o404 + 1yl XltkH + €k

Result
« Average spillover §=+0.89 pp (95 % Cl +0.48,+1.31)
— Coordinated surges can lift fulfilment across shared lines.

Operational insight

v/ Capacity synergy outweighs cannibalisation in this plant network.
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Chance-Constrained Knapsack Optimizer

ObjeCtiVe max ZTi-’Bi 2 B Z(in/'z = Kp
i€EP

z€{0,1}17I iep
e T_i = 5th-percentile bootstrap CATE c_i=0.84h/SKU
e  Why 5th-percentile? — Guarantees uplift in worst 5 % scenarios.
Runtime & optimality

e - Greedy = optimal for K < 5; MILP (CPLEX) < 90 ms for 372 SKUs.
e - Daily end-to-end pipeline = 7.4 s on commodity CPU.

Metric Heuristic Ours
Mean uplift +0.8 pp +5.4 pp
Sth-pct uplift +0.2 pp +4.7 pp
Worst-case risk — -88%
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Prescriptive Results vs. Incumbent Heuristic

Offline replay
Policy Mean 1 5th-pct 1 Std-dev |
Vollt;r::s-triacnk +0.8 pp +0.2 pp 0.6 pp
Poii(r;tézz’gr:s te +6.1 pp +3.3 pp 1.9 pp
Chance(-::gjtrained +5.4 pp +4.7 pp 1.1 pp
Key takeaways

e 4.9x higher worst-case uplift than heuristic.

e Trades 0.7 pp mean to slash downside risk by 88 %.

e Prevents = 1.9 M late cases over 8 months.
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Auditability, Robustness, Deployment

Transparency

v Propensity weights, MSM coefficients, CATE intervals, solver logs
all serialised for domain review.

Robustness checks

* Placebo surge dates — ATT collapses to 0 (no spurious effect).
» Weight-clip 1 < 99 pct — < 0.4 pp drift in ATT.

» Rosenbaum bound: uplift > 0 for ' < 1.35 (unmeasured bias).

Deployment footprint

* Python + scikit-learn + CPLEX; one cron job per plant.
« CPU-only: 7.4 s total per day, fits inside MES scheduler SLA.
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Conclusion

Graph-aware causal ML turns noisy surge logs into reliable,

SKU-level uplift and spillover estimates (ESS +62 %, SMD < 0.05).

Risk-aware optimisation lifts forward-week fulfilment by
+5.4 pp on average and protects = 4.7 pp in the worst 5 %.
— 5x improvement over today’s spreadsheet heuristic.

Glass-box & fast: full audit trail, sub-second solve times,
deployable with existing MES.
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