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I Motivation

Q: How can we effectively learn a policy where there exist new actions?
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I Data Generating Process in Contextual Bandits
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I Logged Bandit Data in Contextual Bandits

Logged Bandit Data
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I Problem of Off-policy Learning (OPL)

Goal of OPL: Learn a parameterized policy which maximizes the policy value

Goal of OPL
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parameterized policy

The performance metric of OPL is the expected reward under a policy

Policy Value
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expected reward
given context and action




Existing Method: Policy-based Method

Policy-based methods use the policy gradient to iteratively update the parameter

Iterative Parameter Update
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policy gradient

Since we cannot access the true policy gradient, we need to estimate it

Inverse Propensity Scoring (IPS)
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I Existing Method: Properties of IPS and DR

IPS and DR are unbiased under full support

Full Support
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However, IPS and DR do not select a new action at all
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I Definition of the Set of New Actions

We represent action @ as d-dimensional action features

fla) = (fi(a),..

- fila),. .. fa(a))

We define new actions as the combination of the action features whose probability is O for any context
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Character type

* male, female, child
Title position

* top, center, bottom
Title size

- small, large



Key Idea 1: Relaxation of Full Support

Independent support considers the support for each dimension of the
action feature

Independent Support
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Support for each dimension of action feature
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where 7mo(filz) ;= ) mo(alz) is the marginal probability of observing f;under 7rg
a€A:fi(a)=fi

Independent support is a weaker assumption than full support



The Pseudoinverse (Pl) Estimator

Pseudoinverse estimator is based on the independent support

Pseudoinverse (Pl)
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Flattened vector representing the one-hot encoding of each action feature

where T'rg o := Erg(aj) s, ()]}, o)]2] and

M7 denotes the Moore-Penrose pseudoinverse of matrix M

Pl can learn a new action thanks to the relaxation of the support condition



I Property of Pl

Pl is unbiased under independent support and linearity

Linearity

ZCH z, fi(a)) = I, () Pa.

Latent value function Intrinsic reward vector
for each dimension of action feature

However, linearity is rarely satisfied in practice




Key Idea 2: Relaxation of Linearity

Local linearity allows the interaction of the first s dimensions of the
action features

Local Lmearlty
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Latent value Inte.ractlon. effect. of Overall action indicator
for each dimension the first s dimensions
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Vector with binary values
representing the first s dimensions

where T, := concat[ls,,I¢, | and ¢, := concat|p,; € RI™, ¢, 1.5 € R™ ]

Local linearity is a weaker assumption than linearity



The Local Combination Pseudoinverse (LCPI) Estimator

LCPI allows the interaction effects of first s dimensions of action features

Local Combination Pseudoinverse (LCPI)
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Allow the Interaction effect
of the first s dimensions

Pl is the special case of LCPl where s =1



Property of LCPI

LCPI is unbiased under local linearity and local combination support

Local Combination Support
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Support for the first s dimensions of action feature
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Independent support for the rest of the dimensions

Thus, LCPI can effectively select a new action under the mild assumptions



I Key Idea 3: Balance Tradeoff between Policy Value and New Actions

Combining LCPI and DR will yield the high policy value and effective new actions

OPL Method Overall Learned Policy Value Ability to Learn New Actions
RegressionBased (a) Medium No
PolicyBased (IPS) Medium No

PolicyBased (DR) | High |k No
PolicyBased (PI) Medium \ Yes

PolicyBased (LCPI) Medium-High Yes

Combine two great properties



I The Policy Optimization for New Actions (PONA) Algorithm

PONA takes the weighted average of LCPl and DR

Policy Optimization for New Actions (PONA)

VoVeona(me; &, D) = k- VeVicpi(me; D) + (1 — k) - VoVpr(7e; D)

K balances the policy value and learning new actions

We can impose the following constraints for hyperparameter tuning

Constraints on the percentage of new actions
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I Synthetic Data Experiment with Varying Training Data Size

* PONA effectively learns new actions while achieving the highest
policy value, tying with DR

excels in the selection of effective new actions
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Summary

 Existing OPL methods can effectively select existing actions but
cannot explore new actions at all

* Pl can select a new action due to its basis on independent support on
action features

* LCPI further improves the effectiveness of new actions by relaxing
linearity

* Finally, PONA balances the tradeoff of the overall policy value
optimization and learning new actions via the hyperparameter



Appendix



I Existing Method: Regression-based Method

Regression-based methods learn a policy via the estimation of the g-function gg (w, (I)

Typical Regression-based Methods

exp(go(z,a)/T)

2 a0 €xp(go(z, a’)/T)

where 7 > 0 is the temperature parameter

mo(alx) =

However, it cannot select a new action at all
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I Synthetic Data Experiment with Varying Number of New Actions

* PONA learns new actions while achieving the higher or same performance
compared to PolicyBased (DR) even when there are many new actions

achieves higher policy values in each metric compared to ! due to
the relaxation of reward assumption
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Synthetic Data Experiment with Varying Degree of Local Linearity

* PONA is more robust to the violation of the local linearity
is sensitive to the violation of the local linearity

* Existing methods are not affected by the violation of local linearity

=@=Logging —-§= RegBased (a) =@- RegBased (f) =-@= PolicyBased (IPS) =@= PolicyBased (DR) == PolicyBased (PI) =&= LCPI =@= PONA
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I Synthetic Data Experiment with Varying Lower Limit

* The proportion of the new actions increases as we increase the lower
limit

* The hyperparameter tuning of k can effectively control the proportion
of new actions
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Synthetic Data Experiment with Varying Upper Limit

* The proportion of the new actions decreases as we decrease the upper
limit

* The hyperparameter tuning of k can effectively control the proportion
of new actions

=@= PONA (py= ) =®= PONA (varying py) =®= PONA (k= 1.0)
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Synthetic Data Experiment with Varying Dimension of Local Combination Support

* PONA and can learns new actions while achieving the
comparable performance with DR under various dimension of local
combination support

isthe same as " whens =1
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I Real-world Data Experiment with Varying Training Data Size

* PONA effectively learns new actions while achieving the highest
policy value, tying with DR

* DR does not choose new actions at all
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I Real-world Data Experiment with Percentage of New Actions

* PONA learns new actions while achieving the higher or same performance
compared to DR even when there are many new actions

achieves higher policy values in each metric compared to ! due to
the relaxation of reward assumption
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