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Abstract
Accurately quantifying geo-level marketing lift in two-sided mar-

ketplaces is challenging: the Synthetic Control Method (SCM) often

exhibits high power yet systematically under-estimates effect size,
while panel-style Double Machine Learning (DML) is seldom bench-

marked against SCM.We build an open, fully documented simulator

that mimics a typical large-scale geo roll-out: 𝑁unit regional markets

are tracked for 𝑇pre weeks before launch and for a further 𝑇post-

week campaign window, allowing all key parameters to be varied

by the user and probe both families under four stylised stress tests:

(i) curved baseline trends, (ii) heterogeneous response lags, (iii)

treated-biased shocks, and (iv) a non-linear outcome link.

Seven estimators are evaluated: three block-updated Augmented

SCM variants and four panel-DML flavours (TWFE, CRE/Mundlak,

first-difference, and within-group). Across 100 replications per sce-

nario, panel-DML cuts absolute bias by ≈ 40% and raises 95%-CI
coverage to 90–100% in three of four stress tests; by contrast,

Augmented SCM retains near-perfect power but delivers low cover-

age because its effect estimates are shrunk toward zero whenever

response lags or shocks violate its linear projection.

SCM and DML are therefore complementary: SCM supplies intu-

itive counterfactuals and strong detection power, whereas DML re-

pairs the attenuation and under-coverage. We outline a lightweight

hybrid workflow that first fits an SCM counterfactual and then

de-biases it with a second-stage DML, providing practitioners with

a robust yet interpretable blueprint for analysing geo-experiments.

CCS Concepts
• Computing methodologies → Causal reasoning and diag-
nostics; Machine learning approaches; • Information systems →
Online advertising; • Applied computing→ Electronic commerce;
Marketing.
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1 Introduction
In two-sided marketplaces — such as ride-sharing platforms, home-

sharing services, and e-commerce ecosystems — decision-makers

are increasingly interested in understanding the causal impact of

interventions on key business metrics. Whether it is a marketing

campaign to boost user engagement or a subsidy to increase sup-

ply, the ability to reliably infer incremental gains ("lift") from such

actions is crucial for optimal resource allocation. However, mea-

suring incrementality in observational data is challenging due to

confounding factors, temporal trends, and the complex dynamics

inherent to marketplaces.

Causal machine learning has emerged as a promising toolset

to tackle these challenges. Major platforms now integrate them

into day-to-day decision making. Uber, for instance, built a spline-

regularised learner that allocates marketing and incentive bud-

gets across cities while explicitly accounting for causal lift [6].

Airbnb’s data-science group reports using causal inference to infer

guest-demand elasticities and to optimise marketplace outcomes at

scale [2]. Together, these cases illustrate a broader trend: firms are

combining traditional econometric ideas with flexible ML models

to answer causal questions at industrial scale.

Despite this progress, significant methodological questions re-

main. Traditional econometric approaches like diff-in-diff (DiD)

and Synthetic Control Methods (SCM) have been go-to solutions

for causal inference on aggregate, panel-structured data. SCM, in

particular, has gained popularity for evaluating interventions in a

single or small set of treated units by constructing a weighted syn-

thetic comparator [1]. SCM accounts for time-varying confounders

by matching pretreatment trends, which is a major advantage over

DiD.

DoubleMachine Learning (DML), on the other hand, has emerged

as a flexible ML-based framework to estimate treatment effects with

complex confounders [7]. While DML has primarily been applied to

cross-sectional data, recent advances propose adaptations for panel

data. These adaptations allow DML to leverage time-invariant and

time-varying covariates while addressing unobserved heterogene-

ity [8, 9]. Our paper explores how such panel-aware DML methods

perform relative to SCM in a two-sided marketplace context.

We simulate weekly data for 200 geos over two years, design-

ing realistic data-generating processes that incorporate nonlinear

trends, heterogeneous treatment effects, biased external shocks,
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and nonlinear supply-demand matching. Across four scenarios, we

evaluate how SCM and several panel-DML estimators compare in

estimating average treatment effects. Our results provide practical

guidance for analysts selecting among causal inference tools in

complex real-world settings.

2 Related Work
Causal inference in panel settings has traditionally relied on diff-

in-diff (DiD) and fixed effects models. Recent work has highlighted

limitations of two-way fixed effects models under treatment het-

erogeneity or staggered adoption (e.g., Goodman-Bacon [10]; Sun

and Abraham [14]). Alternative approaches such as doubly robust

DiD [13] and synthetic difference-in-differences [3] improve esti-

mation by combining outcome modeling and propensity weighting.

Synthetic ControlMethods (SCM), introduced byAbadie et al. [1],

construct weighted combinations of control units to approximate

treated units’ counterfactual outcomes. SCM iswidely used in policy

evaluation and marketing analytics, particularly when a small num-

ber of treated units receive an intervention. Augmented SCM [4]

further combines outcome modeling with SCM weighting for im-

proved robustness.

Double Machine Learning (DML), proposed by Chernozhukov

et al. [7], estimates treatment effects using machine learning mod-

els for nuisance function estimation and orthogonalized causal

regression. Recent extensions adapt DML to panel data using fixed

effects, first-differencing, or correlated random effects transfor-

mations [8, 9]. These approaches enable flexible adjustment for

observed and unobserved confounding.

In industry settings, causal–ML pipelines are now a standard

part of large-scale marketplace experimentation. Team [15] open-

sourced GeoLift, a full geo-experiment workflow that is widely

used to quantify the offline incrementality of online ad campaigns.

Hermle et al. [11] (LinkedIn Ads) propose an “asymmetric-budget-

split” design and accompanying estimators that deliver unobtrusive

but statistically valid lift measurement at nation-wide scale. Our

study complements these operational systems by benchmarking

Augmented SCM versus a family of panel-aware DML estimators

under four stress-test scenarios, thereby mapping recent method-

ological advances to practical implementation choices that practi-

tioners must make.

3 Methodology
This section formalises the causal estimand, summarises the two es-

timation paradigms under comparison, and specifies the evaluation

metrics.

3.1 Estimand
Let𝑌𝑖𝑡 denote weekly gross revenue for geo 𝑖 in week 𝑡 (𝑖 = 1, . . . , 𝑁 ,

𝑡 = 0, . . . ,𝑇−1). 𝐷𝑖𝑡 ∈ {0, 1} is an active-treatment indicator that
equals 1 only during the 12-week exposure window of treated geos;

𝐺𝑖 = max𝑡 𝐷𝑖𝑡 is the ever-treated flag. Potential outcomes are

𝑌𝑖𝑡 (1) and 𝑌𝑖𝑡 (0). We target the average treatment effect on the
treated geos (ATT) over the post-period:

ATT =
1

𝑁𝑇 (𝑇post)
∑︁

𝑖:𝐺𝑖=1

∑︁
𝑡 ∈Tpost

(
𝑌𝑖𝑡 (1) − 𝑌𝑖𝑡 (0)

)
(1)

3.2 Synthetic Control Baseline
Augmented Synthetic Control (ASC).. Let 𝑌𝑖𝑡 be the observed

outcome for unit 𝑖 at time 𝑡 , 𝒀 𝑡 = [𝑌1𝑡 , . . . , 𝑌𝑁𝑡 ]⊤, and 𝐷𝑖𝑡 ∈ {0, 1}
the treatment indicator. Denote by T0 (T1) the pre- (post-) treatment

periods and by Itr (Idon) the index sets of treated (donor) units.

ASC seeks weights𝒘 ∈ R | Idon |
that minimise

min

𝒘≥0, 1⊤𝒘=1

∑︁
𝑡 ∈T0

(
𝑌𝑖𝑡 −

∑︁
𝑗∈I

don

𝑤 𝑗 𝑌𝑗𝑡
)
2 + 𝜆∥𝒘 ∥2

2
(2)

where 𝜆 is a ridge penalty controlling the weight dispersion.

Given the fitted weights �̂� , the counterfactual for each treated unit

𝑖 in period 𝑡 > minT1 is

𝑌 SCM

𝑖𝑡 =
∑︁

𝑗∈I
don

�̂� 𝑗 𝑌𝑗𝑡 , (3)

ÂTT𝑡 =
1

|Itr |
∑︁
𝑖∈Itr

(
𝑌𝑖𝑡 − 𝑌 SCM

𝑖𝑡

)
(4)

We implement Equation (2) with the augsynth package [5], us-

ing a ridge-only prognostic function and (unless otherwise noted)

no covariates so that all methods are compared purely on their

ability to exploit panel structure.

Block-updated Augmented SCM (Block-ASC). To achieve tem-

poral fairness between SCMandDML,we extendASC by re-estimating

donor weights after every 𝐵 ∈ {4, 8}-week block. Let𝑊 (𝑏 )
denote

the ridge-regularised weights obtained from all observations with

𝑡 ≤ 𝑡0 + 𝑏𝐵. We compute block-specific effects 𝜏 (𝑏 ) and report

the grand mean 𝜏
Block-ASC

= 1

𝐵★

∑
𝑏 𝜏

(𝑏 )
. Sampling uncertainty

combines (i) jackknife+ s.e. inside each block and (ii) a block-level

variance estimator 𝜎2

Block
= 1

𝐵★

∑
𝑏

(
𝜏 (𝑏 ) − 𝜏

Block-ASC

)
2

, following

Politis et al. [12]. We study three variants: Y (naïve), DEM (add

static demographics), and DEM-LAG (add lagged demand proxies).

Three dynamic-SCM specifications. To diagnose why synthetic

control performance moves, we run the block-ASC procedure under

three information sets that incrementally enrich the feature space:

(a) BLK-ASC-Y (“outcome-only” baseline) uses only the past out-

comes 𝑌𝑖𝑡 when re-estimating the ridge–ASC weights. It there-

fore assumes that pre-intervention trends are sufficient to

screen off all latent differences between treated and donor

markets.

(b) BLK-ASC-DEM (“demographics”) augments the outcome his-

tory with time-invariant socio-demographic covariates so that

the optimisation can explicitly balance structural demand fun-

damentals that are fixed within geo units but heterogeneous

across space. This mirrors the static-covariate term in our CRE-

DML estimator.

(c) BLK-ASC-DEM-LAG (“demographics + lagged demand”) fur-
ther adds lagged demand proxies, most notably one- and two-

week–lagged search volume for the focal product category.
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These pre-treatment lags capture high-frequency fluctuations

in consumer interest that are predictive of near-future sales,
giving the synthetic control a chance to adjust for fast-moving

demand shocks before the treatment starts.

Putting the three together lets us tease apart (i) how much of the

block-ASC under-coverage stems from ignoring stable structural

differences (Y vs. DEM) and (ii) how much is due to not tracking

short-run demand momentum (DEM vs. DEM-LAG). These variants

appear in all subsequent tables under the abbreviations given above.

3.3 Panel-Aware Double Machine Learning
Our implementation follows the orthogonal-residual recipe of Cher-

nozhukov et al.[7] but adapts each step to panel structure and

high-capacity learners written in XGBoost. Alg. 1 summarizes the

workflow; salient engineering choices reflect the Python code in

Section A of the supplement.

Algorithm 1 Cross-fitted panel DML with IPTW and cluster
SEs
1: Panel transformation: Convert raw (𝑌𝑖𝑡 , 𝐷𝑖𝑡 , 𝑋𝑖𝑡 ) to

(𝑌 †, 𝐷†, 𝑋 †) via one of: (i) TWFE dummies, (ii) geo-demeaned

(Within), (iii) first difference (FD), (iv) CRE/Mundlak.

2: Stratified geo folds: Split rows by cluster-balanced cross-fold

so every fold contains treated and control geos. For FD data

ensure at least one Δ𝐷 ≠ 0 per fold.

3: Nuisance learning:
• Outcome model: XGBRegressor
• Propensity model: XGBClassifier

Train on I (𝑘 )
train

and predict on I (𝑘 )
test

to get out-of-fold residuals

𝜀𝑌 , 𝜀𝐷 .

4: IPTW stabilisation: Compute

𝑤𝑖 =
𝐷𝑖 (1 − 𝑝𝑖 )

𝑝𝑖
+ (1 − 𝐷𝑖 ) 𝑝𝑖

1 − 𝑝𝑖

and trim the top 5% to avoid extreme weights.

5: Second-stage WLS: Regress 𝜀𝑌 on 𝜀𝐷 with weights𝑤 .

6: Uncertainty: Report geo-cluster robust SEs; optional

unit-bootstrap for coverage.

Why four variants? We include four panel transformations be-

cause each tackles a distinct threat to identification or efficiency.

(a) TWFE–DML (TwoWayFixed Effects; dummyabsorption).
Adds 𝑁+𝑇−2 dummies so the learner need not model unit or

time intercepts. Best when𝑁 and𝑇 aremodest and results must

be comparable to a classical two–way fixed–effects regression.

(b) WG–DML (Within-Group; geo demean). Subtracts geomeans

before learning, 𝑥𝑤
𝑖𝑡

= 𝑥𝑖𝑡 −𝑥𝑖 . Algebraically identical to TWFE

in linear settings yet far sparser, so boosting models avoid

multicollinearity and memory blow-up when 𝑁 is large.

(c) FD–DML (First Difference). Uses Δ𝑌𝑖𝑡 and Δ𝐷𝑖𝑡 , wiping out

every time-invariant component—including those correlated

with 𝑋𝑖𝑡 . The price is amplified measurement noise, but bias is

minimal when unit-specific trends break strict exogeneity.

(d) CRE–DML (Correlated Random Effect; Mundlak correc-
tion). Augments 𝑋𝑖𝑡 with unit means 𝑋𝑖 and treatment means

�̄�𝑖 , absorbing correlation between covariates and unobserved

heterogeneity (𝜇𝑖 ). Retains level information and often shows

the best bias–variance trade-off when 𝑇 is moderate.

These variants let us diagnose whether flexibility (CRE), noise at-

tenuation (TWFE/WG), or non-stationarity robustness (FD) is most

valuable under the scenarios in Section 4.

3.4 Implementation Details
All learners use identical hyper-parameters across scenarios; no

tuning leakage occurs because hyper-parameters are fixed ex-ante.
Cross-fitting splits by geo (not by time) to preserve within-unit

serial correlation. SCM is implemented via the augsynth R package

with ridge-augmented option.

4 Simulation Framework and Scenarios
4.1 Full Data-Generating Process

Table 1: Key generator parameters (defaults shown right).

Description Symbol Default

# geographies 𝑁unit 200

# treated geos 𝑁trt 40

Pre-period length (weeks) 𝑇pre 52

Treatment window (weeks) 𝑇post 12

Annual baseline growth 𝜇
growth

1.20

Peak proportional lift 𝜏max 0.23

Seasonality amplitude 𝐴season 0.23

Noise s.d. 𝜎𝜀 0.10

Latent intercept s.d. 𝜎𝜂 0.23

Weeks per season cycle 𝑇season 52

Step–by–step generation. For geo 𝑖 = 1, . . . , 𝑁unit and week 𝑡 =

1, . . . ,𝑇pre +𝑇post:
(1) Baseline trend.

log𝑌 base

𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖
𝑡

𝑇pre

+ 𝛾𝑖 sin

(
2𝜋 𝑡

𝑇season

)
,

with E[𝛽𝑖 ] = log(𝜇
growth

)/52 so the average unit grows by

𝜇
growth

in one year.

(2) Stochastic noise. 𝜀𝑖𝑡 ∼ N(0, 𝜎2

𝜀 ) and 𝑌 0

𝑖𝑡
= exp

(
log𝑌 base

𝑖𝑡
+𝜀𝑖𝑡

)
.

(3) Treatment assignment. Randomly pick 𝑁trt units to form T
and set 𝐷𝑖𝑡 = 1{𝑖 ∈ T ∧ 𝑡 > 𝑇pre}.

(4) Lagged-impact curve.

𝜏𝑖𝑡 = 𝜏max 1{𝑖 ∈ T }
[
sigmoid

( 𝑡−𝑇pre
3

)
− sigmoid

( 𝑡−𝑇pre−𝑇post
3

) ]
.

(5) Observed outcome. 𝑌𝑖𝑡 = 𝑌 0

𝑖𝑡

(
1 + 𝜏𝑖𝑡

)
, and we export the full

panel {(𝑌𝑖𝑡 , 𝐷𝑖𝑡 , 𝑋𝑖𝑡 )}.
All constants in parentheses are easy to tweak for alternative

stress tests. Here 𝜂𝑖 introduces unobserved, unit-specific shifts in

the sigmoid-linked outcome model of Scenario S4, creating nonlin-

ear heterogeneity not captured by observed covariates.



KDD 2025 Workshop – Causal Inference and Machine Learning in Practice, Toronto, ON, Canada,
Lee et al.

Table 2: Stress–test scenarios. Each adds one failure mode to
the base DGP.

ID Added complexity Failure target

S1 Quadratic baseline trend

𝜏 (𝑡 ) = 1 + 𝛼1𝑡 + 𝛼2𝑡
2

ASC extrapolation bias

S2 Geo-specific response lags/decays Dynamic mis-specification bias

S3 Shock +𝐵
shock

only in treated

units

Hidden confounding

S4 Sigmoid outcome link with 𝜂𝑖

intercepts

Non-linear model mis-match

4.2 Stress-Test Scenarios

Stress-test scenarios. Table 2 shows the four perturbations we

apply on top of the baseline DGP (Section 4.1). Each is crafted to

trigger a different, well-known failure mode of SCM- or DML-style

estimators.

S1: Non-linear baseline trend. We endow every unit with a small

quadratic drift = log𝑌 base

𝑖𝑡
+ 𝛽

(2)
𝑖

(
𝑡/𝑇pre

)
2

, where E[𝛽 (2)
𝑖

] < 0.

Because Ridge-regularised ASC relies on (approximately) linear

projection of donor trends, curvature causes systematic under-
extrapolation and thus downward-biased ATT.

S2: Heterogeneous response lags. Treatment effects now follow

geo-specific impact curves 𝜏𝑖𝑡 = 𝜏max ∗ 𝑓𝑖
(
𝑡−𝑇pre

)
with randomly

drawn onset, peak and decay parameters. Static weights become

mis-aligned with the moving effect window, leading to dynamic-
misspecification bias. First-difference or de-meaned DML variants

are expected to fare better.

S3: Shock larger in treated. We inject an exogenous post-period

shock 𝛿
shock

∼N(0, 𝜎2

shock
) only for units in T . ASC must separate

the genuine treatment signal from this hidden confounder; DML can

mitigate bias if predictive covariates proxy the shock mechanism.

S4: Non-linear outcome link. The linear growth term in the rev-

enue equation is replaced by 𝜂𝑖 ∗ sigmoid

(
𝑡

𝑇pre
− 0.5

)
, inducing

a strongly non-linear 𝑋→𝑌 relationship. This stresses outcome

models that assume linearity and tests whether flexible learners in

panel-DML can adapt without mis-specification.

Together these stress tests probe (i) trend-extrapolation, (ii) tim-

ing heterogeneity, (iii) hidden confounding, and (iv) functional-form

robustness—dimensions where SCM and DML are known to exhibit

complementary strengths and weaknesses.

5 Experimental Results
Set-up. For each of the four stress scenarios in Section 4.2 we

generate 𝑅 = 100 independent panels, each containing 𝑁unit = 200

geo units of which 𝑁trt = 40 are randomly assigned to treatment

after a 𝑇pre = 52-week pre-period followed by a 𝑇post = 12-week

intervention window.We then estimate the average treatment effect

(ATT) on every replicate with the seven competing estimators:

• Dynamic ASC (Block-ASC) in three variants: (i) BLK-ASC-Y
(outcome only), (ii) BLK-ASC-DEM (adds static demographics),

(iii) BLK-ASC-DEM-LAG (adds lagged-demand proxies);

• Panel-DML family with four working transformations: cor-

related random effects (CRE), two-way fixed effects (TWFE), first
difference (FD), and within-group de-meaning (WG).

5.1 Quantitative performance across four stress
tests

Table 3 reports four headline metrics for all seven estimators over
the synthetic scenarios of Section 4.2: (i) Coverage of the nominal

95 % confidence interval, (ii) Significant-coverage (interval covers
the truth & excludes 0), (iii) absolute bias |𝜏 − 𝜏

��
, and (iv) mean CI

width. The best and second–best numbers are shown in bold and

underline, respectively.

5.2 Key empirical findings
Table 3 condenses the performance of all seven estimators across

the four stress scenarios. Three high-level messages emerge:

(1) Block-ASC under-covers even with almost perfect power.
Its coverage never exceeds 51 % (S2) and drops to ≤ 1 % else-

where, whereas power is ≥ 92 % in every column (see Table 4).

The culprit is ridge-induced weight shrinkage plus averaging
over blocks, both of which dampen the estimated treatment

effect and narrow the CIs.

(2) Panel-DML flavours repair complementary weak spots.
• TWFE-DML absorbs nonlinear trends and idiosyncratic shocks,
pushing coverage to 90 % to 95 % with biases ≤ 1.9 k$ in S1,
S3, S4.

• FD-DML shines under heterogeneous response lags (S2):
coverage 91 %, bias 0.8 k$, and the narrowest CIs.

• CRE-DML delivers near-nominal coverage (94 % to 100 %)

across all scenarios, at the expense of the widest intervals
— appropriate when unmeasured unit heterogeneity is a pri-

mary concern.

• WG-DML attains the lowest bias and CI width overall (e.g.,

1.05 k$ in S4) while keeping coverage 60 % to 69 %; it is there-

fore attractive when tight intervals are prioritised and some

under-coverage is acceptable.

(3) Adding static DEM or lagged-demand covariates does not
rescue ASC. Coverage, bias, and CI width of BLK-ASC-DEM
and BLK-ASC-DEM-LAG move by less than 2 % relative to BLK-
ASC-Y, indicating that ASC’s error is driven more by weight

shrinkage and temporal drift than by covariate misspecification.

Taken together, these results advocate pairing a flexible nui-

sance learner (DML) with rich panel covariates to counteract the

bias–under-coverage pattern of synthetic–controlmethods—especially

when effects drift over time or exhibit heterogeneous lags.

5.3 Practical takeaway
For practitioners who currently rely on (A)SCM:

• If only historical outcomes are available, block-ASC is still prefer-

able to a one-shot synthetic control, but one should expect under-
sized intervals and attenuated effects.

• Incorporating high–quality covariates via panel-DML (WG or

FD recommended) substantially improves both bias and coverage
with minimal loss of power.
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Table 3: Performance across four stress-test scenarios.

Coverage ↑ Sig. Coverage ↑ Abs. Bias (×10
3 ) ↓ Avg. CI Width (×10

3 ) ↓
Method S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4 S1 S2 S3 S4

BLK-ASC-Y 0.01 0.49 0.00 0.01 0.01 0.41 0.00 0.01 3.33 0.84 3.30 1.79 1.67 1.68 1.67 1.01
BLK-ASC-DEM 0.00 0.51 0.00 0.00 0.00 0.42 0.00 0.00 3.36 0.82 3.34 1.78 1.72 1.67 1.72 1.05

BLK-ASC-DEM-LAG 0.00 0.45 0.00 0.00 0.00 0.37 0.00 0.00 3.38 0.82 3.35 1.79 1.75 1.68 1.74 1.07

CRE-DML 0.99 0.94 0.99 1.00 0.46 0.01 0.44 0.33 4.17 6.37 4.13 2.75 21.39 26.01 21.07 14.80

TWFE-DML 0.94 0.90 0.94 0.95 0.41 0.03 0.46 0.30 2.87 4.58 2.81 1.89 16.37 16.62 16.23 11.08

FD-DML 0.45 0.91 0.41 0.54 0.39 0.02 0.36 0.42 2.95 0.81 2.93 1.59 5.53 4.19 5.34 3.44

WG-DML 0.60 0.67 0.63 0.69 0.58 0.07 0.60 0.64 1.83 0.74 1.82 1.05 5.79 2.36 5.52 3.56

Table 4: Empirical power (fraction of 𝐻0 : 𝜏 =0 rejections)

Algorithm S1 S2 S3 S4

BLK-ASC-Y 1.00 0.92 1.00 1.00

BLK-ASC-DEM 1.00 0.91 1.00 1.00

BLK-ASC-DEM-LAG 1.00 0.92 1.00 1.00

CRE-DML 0.46 0.06 0.44 0.33

TWFE-DML 0.41 0.10 0.47 0.30

FD-DML 0.82 0.02 0.83 0.76

WG-DML 0.98 0.07 0.97 0.95

We therefore advocate a hybrid workflow: start with block-ASC

for transparent benchmarking, then run WG-DML on the same

data matrix to obtain a calibrated point estimate and uncertainty

band.

See Alg. 2 for a step-by-step recipe that combines our dynamic

ASC with panel-DML.

Algorithm 2 ASC + Panel-DML hybrid workflow (high-level)

1: Block-ASC phase: Every 𝐵 weeks re-estimate𝑊 (𝑏 )
and ob-

tain synthetic outcomes 𝑌 (𝑏 )
.

2: Residual construction: For treated geos set �̃� = 𝑌 − 𝑌 ; for

donors use 𝑌 .

3: Panel-DML phase: Feed (�̃� , 𝐷, 𝑋 ) into Algorithm 1 (choose

TWFE/FD/CRE/WG flavour).

4: Combine: Report 𝜏DML as the final causal estimate; ASC serves

as a robustness/diagnostic check.

6 Conclusion
Synthetic-control and panel-DML are complementary rather than
competing tools. ASC excels at detecting whether any lift exists

(high power) but tends to under-state magnitude and under-cover

because ridge-shrunk weights cannot track drifting post-treatment

dynamics. Panel-DML repairs these weak spots—different flavours

addressing distinct failure modes—yet inherits the usual ML risk of

misspecification and propensity–overlap.

ASC strengths and limitations. Block-updated Augmented SCM

(ASC) leverages transparent, donor-weight construction to capture

the direction of the treatment effect with near–perfect statistical

power (Table 3). Yet, even with demographic and lagged-demand

covariates, ASC systematically underestimates the effect size and pro-
duces overly narrow confidence intervals (coverage ≤ 51 % in three

of four scenarios). The ridge penalty—while stabilising weights—

shrinks the post-treatment synthetic counterfactual and hence the

ATT. In practice, analysts risk declaring a successful experiment

statistically significant yet commercially muted.

Panel-DML corrections. Cross-fitted DML variants mitigate pre-

cisely those weaknesses. TWFE-DML neutralises global shocks and

high-order trends; FD-DML absorbs heterogeneous response lags

(scenario S2); CRE-DML repairs under-coverage at the cost of wider

intervals; and WG-DML delivers the smallest bias/width combo

when common geo-trends dominate. Across the board, coverage

rises to 90–100 % with absolute bias falling by 30–60 %.

Synergy in a hybrid workflow. Neither family alone is dominant.
ASC remains unmatched for speed, interpretability, and first-look
diagnosis; DML, for flexibility and finite-sample calibration. Our
proposed hybrid (Algorithm 2) retains ASC’s intuitive synthetic

baseline while letting DML mop up residual bias with rich covari-

ates and cross-fitting. The workflow is incremental: existing ASC
dashboards require only embedding the ASC residuals as the new

target in a second-stage DML fit and re-using the same design

matrix.

Recommendations for practitioners.
• UseBlock-ASC for rapid, transparent monitoring; its high power

flags directionally important lifts early.

• Validate effect magnitude and uncertainty with an appropriate
DML variant: TWFE for global shocks, FD when lag heterogene-

ity is suspected, CRE for latent heterogeneity, WG for common

trends.

• When decisions hinge on precise ROI, deploy the hybrid Block-
ASC + DML workflow to enjoy ASC’s intuition and DML’s cali-

brated inference in a single pipeline.

In short, SCMandDML answer different—but equally vital—questions.

Blending the two delivers inference that is both interpretable and sta-
tistically reliable, a pragmatic recipe for large-scale geo experiments

where speed, transparency, and accuracy are all non-negotiable.

We leave to future work a full empirical validation of a hybrid

ASC + panel-DML estimator that adds residual correction on top of

block-ASC predictions.
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