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Abstract
Performance-based incentives are extensively used to align em-
ployee effort with organizational objectives. Their effective use
is particularly important in high-frequency service environments,
where frontline agents directly shape the customer experience in
real time. However, existing incentive systems for customer-facing
employees rely largely on static, pre-defined rules and typically
overlook the service context that predicts when and where incen-
tives are most valuable. In this paper, we propose Inference-driven
Modeling for Prescriptive Allocation of Constrained Treatments
(IMPACT), a novel framework that integrates causal machine learn-
ing, supervised learning, and constrained optimization to guide
prescriptive allocation of targeted incentives in budget-constrained
service operations. The application is developed in partnership with
a customer service platform seeking to improve customer satisfac-
tion by awarding cash bonuses to agents handling service cases,
while controlling overall compensation costs. The framework flexi-
bly adapts to high-dimensional contextual data and diverse inter-
vention goals, making it broadly applicable to incentive allocation
problems under resource constraints. Experimental results on pro-
duction data demonstrate that IMPACT consistently outperforms
context-free benchmarks, achieving higher customer satisfaction
rates without increasing total incentive spending.

CCS Concepts
• Information systems→ Decision support systems; •Computing
methodologies→ Machine learning approaches.
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1 Introduction
Performance-based incentives, such as bonuses and commissions,
remain an essential lever to guide employee effort toward organiza-
tional goals. In high-frequency customer service environments, the
when and where of offering these incentives matter as much as the
incentive itself: an incentive treatment may influence performance
outcomes in one service session, but have minimal effect in another.
However, conventional incentive plans are typically static and ret-
rospective, uniformly rewarding aggregated past performance (e.g.,
weekly, monthly, or even annually) [18], while overlooking the
contextual features that often better predicts the marginal value
of an incentive in real time. This presents two interrelated prob-
lems: (1) inefficient allocation of limited incentive budgets, and (2)
missed opportunities to proactively influence employee behavior
and improve performance outcomes in real time.

In this research, we propose Inference-driven Modeling for
Prescriptive Allocation of Constrained Treatments (IMPACT), a
model-based framework that proactively allocates cost-effective
incentive interventions in time-sensitive service environments. The
framework integrates causal machine learning (ML), supervised
learning, and constrained optimization to guide personalized incen-
tive decisions that adapt to specific service contexts. The acronym
IMPACT highlights two design choices. The approach is inference-
driven because every decision traces back to counterfactual uplift
estimates rather than descriptive correlations or pre-defined busi-
ness rules, and it is prescriptive because those estimates feed a
downstream optimization model that recommends budget-feasible,
objective-maximizing allocations.

The practical application is developed in collaboration with Al-
ibaba Group, where we design a new incentive system for customer
service agents. The objective is to improve customer satisfaction by
selectively offering bonus opportunities to agents at the beginning
of service sessions. This presents three key challenges: (1) Deci-
sion timing: bonus decisions must be made proactively before the
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conversation begins, requiring reliance solely on pre-interaction
information; (2) Causal inference under partial information: the
counterfactual performance outcome—what would have achieved
under the alternative bonus condition—is unobservable, necessitat-
ing robust causal estimation; and (3) Budget constraints: total bonus
spending is limited by a strict daily budget, requiring cost-effective
allocation across sessions.

These challenges highlight the need for a solution that can effec-
tively manage the complexity of inference, prediction, and alloca-
tion in a unified decision-support system. To address this, we design
IMPACT grounded in an estimate–predict–optimize architecture:
(i) an ensemble of causal learners estimates heterogeneous effects
of bonuses using randomized experimental data; (ii) a supervised
ML model predicts those effects for unseen cases using only pre-
interaction features; and (iii) a robust optimization model allocates
bonuses to maximize expected satisfaction improvements under a
fixed daily budget.

We evaluate IMPACT using production data from more than
380K customer service sessions. Through a series of off-policy ex-
periments, we show that our approach consistently outperforms
both random and homogeneous incentive strategies. Across a broad
budget range, the personalized incentive policies generated by IM-
PACT deliver the highest customer satisfaction rates.

The key contributions of our work come from the following:

• We formulate the incentive targeting problem as a budget-
constrained uplift-maximization task and characterize the
key requirements that guide the development of deployable,
personalized incentive policies.
• We develop a model-based framework (i.e., IMPACT) that
integrates ML-based causal inference, real-time uplift predic-
tion, and combinatorial optimization to deliver cost-effective
incentives in service operations.
• We incorporate a protection function in the optimization
module that guards against worst-case deviations in uplift
predictions, which significantly enhances the robustness of
policies under imperfect uplift signals.
• We demonstrate the practical effectiveness of the proposed
IMPACT framework using production data and compare the
performance with other model-free alternatives.

2 Related Work
2.1 ML for Personalized Interventions
Recent advances in ML have provided powerful tools for designing
personalized interventions through modeling individual-level re-
sponsiveness. Uplift modeling, a key development in this area, seeks
to quantify the incremental impact of actions (e.g., promotions, in-
centives) by estimating individual treatment effects (ITE) [21]. This
ability provides opportunities for more effective intervention strate-
gies, particularly in settings with rich covariates and substantial
treatment heterogeneity, as actions can be directed toward individ-
uals or units with the highest expected benefit. Techniques such
as causal forests [1, 26, 27], meta-learners [16, 31], and doubly ro-
bust estimators [10, 23] have been explored to guide personalized
interventions based on observational and/or experimental data. In
parallel, software libraries such as CausalML [7], EconML [15], and

DoubleML [3] have further lowered the barrier to deploying and
operationalizing these methods in production environments.

Our study advances this stream of research in two ways. First, we
address a key challenge in real-time decision support: some of the
most informative signals for estimating treatment heterogeneity
are only observed after the intervention, and thus cannot be used
at decision time. To overcome this limitation, we introduce a su-
pervised learning module that predicts post-intervention-informed
treatment effects using only features observable before the decision
is made. This preserves the quality of counterfactual estimates while
ensuring full deployability in production environments. Second,
we show how context-specific treatment effects can be translated
into large-scale, operationalized bonus decisions in high-frequency
service environments. Using detailed session-level information in
real-time ITE predictions, our approach enables proactive incentive
interventions.

2.2 Targeting under Constraints and
Uncertainty

In many operational settings, targeting decisions must satisfy hard
constraints, such as budgets, treatment quotas, or fairness require-
ments, while also managing uncertainty in the broader decision-
making context. To address this complexity, recent research has
combined predictive models with constrained optimization tech-
niques [2, 5, 25] to derive real-time decisions. These methods have
been applied in personalized promotions [11], targeted discounts
[6], budget-constrained recommendation systems [25], and other
domains. Our study connects to this stream by framing bonus plan-
ning as a constrained incentive targeting problem, where decisions
are informed by learned uplift estimates.

While many prior applications focus on customer-facing in-
terventions [9, 17, 28, 31], we focus on real-time incentive plan-
ning for frontline service agents, a novel setting characterized
by employee-facing interventions and underexplored treatment
heterogeneity. We propose IMPACT, a multi-step approach that
leverages a estimate-predict-optimize pipeline to deliver targeted
incentives. We demonstrate its effectiveness using real-world pro-
duction data, showing how data-driven incentive targeting can be
extended beyond conventional customer-facing applications. As
part of IMPACT, we incorporate a robust optimization module that
accounts for uncertainty in counterfactual predictions. Building on
the Γ-robust framework [4], we employ a protection function to
guard against worst-case deviations in the predicted uplift. This
enhancement supports the delivery of effective incentive policies
under noisy predictions.

3 Operational Setting and Constraints
Our research is conducted on a large-scale post-purchase customer
service platform of Alibaba, where a service session refers to a live,
text-based online session between a human agent and a customer,
and a case refers to a customer-submitted issue being addressed.
Each session is dedicated to resolving one case. In this setting, we
focus on designing effective bonus strategies that reward agents for
handling the most challenging cases, with the goal of improving
customer satisfaction. To support this initiative, we leverage an in-
house algorithm that classifies each incoming case as either “easy”



IMPACT: An Inference-Driven Modeling Framework for Cost-Effective Incentive Allocation in Service Operations CML-KDD ’25, August 4, 2025, Toronto, ON, Canada

or “difficult” at the onset of the corresponding session. Based on
this classification, we decided to restrict bonus eligibility to cases
identified as “difficult”.

An service session begins when a customer is assigned to a hu-
man agent, initiating a service interaction in which the agent inves-
tigates and addresses the issue using a dedicated digital workbench
interface. At this initiation stage, the case is classified as either
“easy” or “difficult”, as previously discussed. For cases identified
as “difficult”, the system must decide whether to offer the agent a
cash bonus opportunity. If a bonus opportunity is offered, the agent
sees a red envelope icon on the navigation bar along with a prompt
message delivered through the live chat box of their workbench
(Figure 1). If no bonus opportunity is offered, the interface remains
unchanged. Each case can trigger at most one bonus opportunity,
which is visible only to the agent and not to the customer.

Given the budget limitation, the monetary value of a bonus must
be determined after the interaction, based on the customer’s post-
service satisfaction rating score, which is recorded on a 1-to-5 scale.
A pre-defined business rule translates this score into a discrete
payout amount. Thus, while the bonus opportunity is presented to
the agent at the start of the session, the actual payout is finalized
only after the session concludes. Importantly, to ensure the bonus
opportunity has a sustained motivational impact throughout the
service session, the intervention decision must be made before the
service interaction begins. This requires that allocation decisions
rely exclusively on pre-interaction information.

Figure 1: Bonus Allocation Workflow. When a bonus oppor-
tunity is triggered, the agent is notified by a red envelope
icon in the navigation bar and a prompt message in the live
chat window. The payment amount is determined after the
interaction, based on the customer’s satisfaction rating (1–5).

4 Proposed Framework
Motivated by the challenges identified in the bonus allocation work-
flow, we develop IMPACT, a modular framework that integrates
causal ML, supervised learning, and robust optimization to support

proactive incentive targeting (Figure 2). The following subsections
describe the key components of the framework in detail.

Figure 2: Overview of the IMPACTFramework. The data layer
specifies the inputs required for modeling, including exper-
imental, contextual, and operational data. The algorithm
layer implements an estimate–predict–optimize pipeline to
generate personalized incentive recommendations. The ap-
plication layer translates these recommendations into agent-
facing interventions.

4.1 Randomized Experiment
To provide unbiased training data, we first conducted a randomized
controlled trial (RCT) on the customer service platform. From the
full agent pool, we drew a stratified sample of 624 agents. Block
randomization was applied based on agent ability scores to balance
ability differences between groups. Within every quintile of agent
ability, half of the agents were randomly assigned to the treatment
group and half to the control group. Treatment-group agents (312
agents) were eligible to receive bonus prompts on “difficult” cases,
whereas control-group agents (312 agents) never received bonus
prompts, regardless of case difficulty. Customers were randomly
assigned to agents via the platform’s standard routing logic.

Let 𝑖 ∈ 𝐼 denote a customer-agent service session (and associated
case) created during the RCT. For every session, we recorded a
binary treatment indicator 𝑇𝑖 (1 = bonus prompt, 0 = no bonus
prompt) and a binary outcome 𝑌𝑖 that equals 1 when the customer
reports satisfaction (i.e., post-service rating ≥4) and 0 otherwise1.
We also build a 𝑝-dimensional context vector 𝑋𝑖 =

(
𝑋
pre
𝑖

, 𝑋
post
𝑖

)
∈

R𝑝 , where 𝑋pre
𝑖

collects pre-interaction features that are known
before the intervention decision is made, including customer and
agent demographics, case category, agent ability, agent workload,
and the customer’s projected value; 𝑋post

𝑖
collects post-interaction

features that realize during and/or after the session, such as system
latency and network conditions that are independent of treatment
assignment and agent behavior.

The customer-agent assignment approach guarantees that, within
the “difficult” case segment, the intervention decision is statistically
independent of both 𝑋𝑖 and the potential outcomes. Formally,

𝑇𝑖 ⊥⊥
(
𝑋𝑖 , 𝑌𝑖 (0), 𝑌𝑖 (1)

) ��𝐷𝑖 = 1 (1)
1Although we focus on customer satisfaction, 𝑌𝑖 can be flexibly re-defined as other
binary or continuous key performance or operational metric, such as service quality,
first-call resolution, future redial rate, allowing the framework to accommodate other
intervention goals.
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where 𝐷𝑖 = 1 denotes a “difficult” case. This conditional inde-
pendence [8] ensures that any difference in satisfaction outcomes
between treatment and control groups for these “difficult” cases
can be attributed solely to the bonus intervention, providing a valid
basis for estimating heterogeneous treatment effects in the next
stage of the pipeline.

4.2 Causal ML Module
Building on the data collected from the RCT, the Causal ML module
is designed to estimate the session-level treatment effects of bonus
offerings, conditional on rich service contextual features. With
the treatment indicator 𝑇𝑖 ∈ {0, 1} and binary outcome 𝑌𝑖 ∈ {0, 1},
the session-level Conditional Average Treatment Effect (CATE) is
defined as

𝜏𝑖 (𝑥𝑖 ) = E
[
𝑌𝑖 | 𝑋𝑖 = 𝑥𝑖 , 𝑇𝑖 = 1

]
− E

[
𝑌𝑖 | 𝑋𝑖 = 𝑥𝑖 , 𝑇𝑖 = 0

]
(2)

In our setting, the high-dimensional feature space and the lack
of strong prior knowledge about the structure of treatment effect
heterogeneity make it difficult to rely on any single learner to
estimate Equation (2). Therefore, we follow the advocated practices
[12, 22] and employ an ensemble of causal learners (i.e., Causal
Forest, X-Learner, T-Learner, and Doubly-Robust Learner) using
R-Stacking [12, 20]. As output, we obtain the uplift estimate 𝜏𝑖 and
the corresponding variance estimates, which are used in subsequent
policy evaluation.

To increase statistical efficiency, we use both 𝑋
pre
𝑖

and 𝑋post
𝑖

in
training causal learners. Although incorporating 𝑋post

𝑖
enhances

estimation precision and statistical power during offline training,
these features will not be available at the time of decision for up-
coming cases. This operational constraint motivates the need for
the subsequent Supervised Learning module.

4.3 Supervised Learning Module
The Supervised Learningmodule predicts the uplifts estimated from
the Causal MLmodule, using only pre-interaction features available
at decision time. Specifically, we fit two supervised models using
the RCT data:

(i) CATE predictor.We treat the CATE estimates 𝜏𝑖 produced
by the Causal ML module as labels, and learn a mapping 𝜏𝑖 =

𝑓 (𝑋pre
𝑖
) where 𝑋pre

𝑖
denotes the vector of pre-interaction features

introduced in Section 4.1. This design addresses a key challenge in
real-time decision support: while post-interaction data are essential
for efficiently estimating treatment heterogeneity, they are not
available at the time of decision [19]. By learning to predict these
post-interaction-informed labels using only pre-interaction signals,
the predictor enables deployability in real-time operations.

(ii) Cost predictor. Similarly, as illustrated in Figure 1, the
monetary incentive cost 𝑐𝑖 associated with case 𝑖 under treatment
𝑇 = 1 is revealed only after the service session ends and is thus
also unavailable at decision time. To address this, we learn a second
mapping 𝑐𝑖 = 𝑔(𝑋pre

𝑖
) based on the same pre-interaction context

to generate real-time cost predictions at the case level.
The framework places no restriction on the functional form of

𝑓 (·) and 𝑔(·). At run time, the module consumes the pre-interaction
context of each newly arriving “difficult” case, and outputs the pair

(
𝜏𝑖 , �̂�𝑖

)
=

(
𝑓
(
𝑋
pre
𝑖

)
, 𝑔

(
𝑋
pre
𝑖

) )
. These predictions serve as key input

parameters for the downstream optimization module.

4.4 Optimization Module
The optimization module translates the uplift predictions from the
CATE predictor into bonus allocation decisions. The objective is
to maximize the expected satisfaction uplift while respecting the
daily budget. For each newly arriving case 𝑖 , the binary variable
𝑤𝑖 ∈ {0, 1} denote the bonus intervention decision, where𝑤𝑖 = 1
indicates a bonus prompt and 𝑤𝑖 = 0 indicates no bonus prompt.
Note that we observe the predicted satisfaction uplift score 𝜏𝑖 (𝑥𝑖 )
and the predicted incentive cost �̂�𝑖 , as well as the remaining budget
𝑏0 at the decision time.

However, since each uplift score 𝜏𝑖 (𝑥𝑖 ) is a predicted value with
clear variability, directly optimizing based on these estimates may
lead to over-committing resources to cases with high nominal uplift
but large prediction errors2. To mitigate the risks associated with
uncertainty in the predicted satisfaction uplift, we propose a robust
incentive allocation model following the Γ-approach [4], which
enables flexible control over the degree of protection against pre-
diction uncertainty by adjusting probabilistic bounds of constraint
violations.

We assume that the expected satisfaction uplift score 𝜏𝑖 is a
symmetric and bounded random variable. Its realized value is al-
lowed to vary randomly within a deviation 𝛿𝑖 > 0 around the
average estimate 𝜏𝑖 , forming a box-type uncertainty set defined
as 𝜏𝑖 ∈ [𝜏𝑖 − 𝛿𝑖 , 𝜏𝑖 + 𝛿𝑖 ]. This box-type uncertainty set is widely
used in robust optimization due to its tractability and ease of imple-
mentation when the true distribution of the uncertain parameter is
unknown [14], which makes it well suited for our operational set-
ting. Under this formulation, the incentive allocation model 𝑧𝑅 (Γ)
is cast as a robust 0–1 knapsack problem that balances expected
satisfaction gains against the risk induced by uncertain uplift pre-
dictions.

𝑧𝑅 (Γ) := max
𝑤

∑︁
𝑖∈𝐼

𝜏𝑖 𝑤𝑖 − Δ(𝑤, Γ) (3)

s.t.
∑︁
𝑖∈𝐼

�̂�𝑖 𝑤𝑖 ≤ 𝑏0 (4)

𝑤𝑖 ∈ {0, 1} ∀ 𝑖 ∈ 𝐼 (5)

where Δ(𝑤, Γ) := max
𝑠

∑︁
𝑖∈𝐼

𝛿𝑖 𝑤𝑖 𝑠𝑖 (6)

s.t.
∑︁
𝑖∈𝐼
|𝑠𝑖 | ≤ Γ (7)

|𝑠𝑖 | ≤ 1 ∀ 𝑖 ∈ 𝐼 (8)

As part of the objective, we introduce a protection function
Δ(𝑤, Γ), which is an inner optimization problem that captures the
worst-case impact of uncertainty in the predicted satisfaction uplift.
The function quantifies the maximum potential loss in uplift due to
deviations, subject to a robustness level Γ. The auxiliary variables
𝑠𝑖 , bounded by 0 ≤ 𝑠𝑖 ≤ 1, determine how much deviation is
considered for each case in the protection function. The constraint
2In contrast, incentive costs are drawn from a small set of discrete values. They
are highly predictable from pre-interaction features and show very little variation
across cases. For simplicity, we treat �̂�𝑖 as known in the optimization model and apply
robustness adjustments only to the more uncertain uplift predictions.
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(7) ensures that the total magnitude of deviations across all cases
does not exceed Γ, allowing the model to balance performance and
robustness. The parameter Γ governs the overall level of protection
by limiting the aggregate deviation mass the model guards against.
The intuition is that even if the predicted gains for a set of cases
deviate adversely within a total deviation upper bound of Γ, the
allocation still contributes a uplift of at least

∑
𝑖 𝜏𝑖 𝑤𝑖 −Δ(𝑤𝑖 , Γ). As

Γ increases, the model shifts from the nominal version that assumes
no uncertainty (Γ = 0) to increasingly conservative stances that
hedge against greater prediction risk.

The formulation of 𝑧𝑅 (Γ) is NP-Hard. The streaming nature
of service platform traffic and latency requirements make exact
optimization impractical for real-time operations. Therefore, we
implement a batched incentive allocation algorithm (1) that fol-
lows a greedy heuristic commonly used in knapsack-based uplift
optimization. For each incoming batch of𝑀 concurrent cases, the
system (i) computes the total uncertainty level Δ𝑡𝑜𝑡 =

∑
𝑖∈𝑀 𝛿𝑖 ,

(ii) derives a scaling factor 𝜃 = min{1, Γ
Δ𝑡𝑜𝑡
} to normalize the ro-

bustness adjustment (iii) calculates the risk-adjusted uplift score
𝜏𝑖 = 𝜏 − 𝜃𝛿𝑖 for each active case, (iv) ranks each case by a priority
score 𝜌𝑖 = 𝜏𝑖/max{�̂�𝑖 , 𝑐} in descending order, where 𝑐 is a cost floor
to prevent division by zero or instability from near-zero costs, and
(v) iteratively assigns bonuses following this order until the residual
budget is exhausted.

Algorithm 1: Batched Greedy Algorithm for Robust Incen-
tive Targeting
Input: CATE predictor 𝑓 (𝑥), cost predictor 𝑔(𝑥), batch of

cases𝑀 , daily budget 𝑏, robustness level Γ
Output: Bonus assignment vector𝑤 = {𝑤∗1 ,𝑤

∗
2 , . . . ,𝑤

∗
|𝑀 | }

1 𝑏0 ← 𝑏;
2 foreach session 𝑖 ∈ 𝑀 do
3 𝜏𝑖 , 𝛿𝑖 ← 𝑓 (𝑥𝑖 );
4 �̂�𝑖 ← 𝑔(𝑥𝑖 );
5 Δtot ←

∑
𝑖∈𝑀 𝛿𝑖 ;

6 𝜃 ← min
{
1, Γ

Δtot

}
;

7 foreach session 𝑖 ∈ 𝑀 do
8 𝜏𝑖 ← 𝜏𝑖 − 𝜃𝛿𝑖 ;
9 𝜌𝑖 ← 𝜏𝑖/max{�̂�𝑖 , 𝑐};

10 Sort sessions in𝑀 in descending order of 𝜌𝑖 ;
11 foreach session 𝑖 in sorted𝑀 do
12 if 𝑏0 − �̂�𝑖 ≥ 0 then
13 𝑤∗

𝑖
← 1;

14 𝑏0 ← 𝑏0 − �̂�𝑖 ;
15 else
16 𝑤∗

𝑖
← 0;

5 Evaluation
5.1 Experiment Setup
5.1.1 Production Data. We evaluate IMPACT and alternative poli-
cies on the six-week RCT data introduced in Section 4.1. The data

contains 382,604 customer cases handled by 624 human agents on
the service platform; 47,915 of these cases (12.5 %) are classified as
“difficult” and hence eligible for bonus opportunities. We randomly
split the entire dataset into three equal-sized subsets for training,
validation, and testing. Stratified sampling is used to preserve the
original treatment-to-control ratio in each split. The training set is
used to fit model parameters, the validation set is used for hyper-
parameter tuning, and the test set is held out entirely for final policy
evaluation.

5.1.2 Policies for Evaluation. We evaluate the effectiveness of the
proposed framework by assessing four targeting policies. These
include two context-free baselines and two IMPACT-based policy
instantiations, which differ only in the CATE predictor used.

• 50/50 Random Assignment (50/50): The benchmark that
offers a bonus opportunity to exactly half of the “difficult”
cases chosen at random until the daily budget is exhausted.
This policy reflects a simple heuristic that does not incorpo-
rate any contextual information.
• Homogeneous Treatment (HT): The benchmark that allo-
cates a bonus opportunity to every “difficult” case uniformly
until the daily budget is exhausted, disregarding contextual
heterogeneity. HT reflects a rule-based approach historically
adopted by the platform.
• IMPACT-RF: A deployable IMPACT-based policy gener-
ated by the proposed framework. It solely leverages pre-
interaction features to generate uplift predictions using a
Random Forest regressor, and feeds the resulting prediction
scores into the downstream knapsack optimizer.
• IMPACT-LASSO: Identical to the IMPACT-RF policy, except
that the CATE predictor is replaced by an 𝐿1-regularized
linear model. The resulting sparse coefficient vector yields a
transparent scoring rule and enables faster inference, while
maintaining generalizability across cases.

5.1.3 Evaluation Method. Due to fairness concerns, the live test-
ing of alternative employee-facing incentive policies is often risky.
Following established practices [24], we instead adopt an off-policy
evaluation strategy that leverages the randomization in the RCT
data to estimate policy performance without additional experi-
mentation. We define a policy 𝜋 : X → {0, 1} as a mapping from
session-level context features 𝑥𝑖 to a binary treatment recommenda-
tion, where 𝜋 (𝑥𝑖 ) = 1 indicates that a bonus opportunity is offered
for session 𝑖 , while 𝜋 (𝑥𝑖 ) = 0 indicates no bonus opportunity is
offered. The performance of any policy 𝜋 (·) is estimated on the
hold-out sample with the inverse propensity score-weighted (IPS)
estimator as described in [13]:

𝑅IPS (𝜋) =
1
𝑁

∑︁
𝑖∈𝐼

[
1 −𝑤𝑖

1 − 𝑒𝑖
(
1−𝜋 (𝑥𝑖 )

)
𝑦𝑖,𝑇=0 +

𝑤𝑖

𝑒𝑖
𝜋 (𝑥𝑖 ) 𝑦𝑖,𝑇=1

]
(9)

where𝑤𝑖 is the realized treatment assignment in the experiment,
𝑒𝑖 = Pr(𝑇𝑖 = 1|𝑥𝑖 ) is the experimental propensity score. 𝑦𝑖,𝑇=0 and
𝑦𝑖,𝑇=1 are the observed outcomes under control and treatment, re-
spectively, and 𝑁 is the number of hold-out sessions. The weighting
scheme corrects for the mismatch between the experimental ran-
domization and the policy recommendation, rendering 𝑅IPS (𝜋) an
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unbiased estimate of the mean satisfaction that would have been
obtained had 𝜋 been implemented.

5.1.4 Evaluation Metrics. We report two metrics to evaluate policy
performance on the hold-out data.

(i) Expected Satisfaction Rate (ESR). This is our primary
domain-specific outcome, estimated using the IPS estimator de-
scribed in Equation (9). It belongs to the broader class of Expected
Outcome Metrics (EOMs) commonly used in uplift modeling and
policy evaluation [29, 30]. In our setting, it provides a direct mea-
sure of how well a given policy improves service outcomes among
“difficult” service cases.

(ii) Area Under the Cost Curve (AUCC). This metric aggre-
gates the incremental satisfaction gains achieved relative to in-
cremental incentive spending. It captures each policy’s ability to
prioritize high-impact cases under varying budget constraints in
the binary treatment setting [9, 30].

5.1.5 Implementation Details. All policies described in Section 5.1.2
are evaluated over a grid of daily budget levels ranging from 0 to
¥100, in increments of ¥5. This normalized range is set to ensure
that our evaluation fully covers the realistic operating range. All
causal ML algorithms described in Section 4.2 are implemented
using the EconML package [15]. Hyper-parameters within the IM-
PACT pipeline are selected via grid search based on validation set
performance measured by mean squared error (MSE). For causal
learners, selection is guided by the transformed outcome MSE [13],
while for supervised prediction models, it is based on the standard
MSE. We use a logistic regression model with an 𝐿-1 penalty to
predict incentive costs from a discrete set of bonus levels. Evalua-
tion metrics are computed using 100 bootstrap samples, and 95%
confidence intervals (CIs) are reported to quantify uncertainty.

5.2 Experimental Results
To protect confidentiality, all reported values in this section have
been normalized to mask actual amounts while preserving relative
magnitudes. Figure 3a illustrates the expected satisfaction rate of
each policy across the range of daily budgets. The IMPACT-based
policies outperform the two context-free baselines across most
of the budget grid. Notably, IMPACT-RF maintains the highest
satisfaction rates over a wide budget range, indicating strong out-of-
sample performance. Figure 3b examines the impact of robustness
adjustments in the optimization module by comparing the nominal
model (Γ = 0) with a robust variant (Γ = 2) over the same budget
range (0-¥100). Policies derived from the robust model generally
achieve higher satisfaction rates, showing the practical value of
accounting for uplift uncertainty in the incentive allocation logic.

To further assess overall effectiveness across the entire budget
range, Table 1 reports the AUCC for each policy. This aggregate
metric reflects how effectively each policy transforms incremental
spending into satisfaction gains. IMPACT-RF achieves the high-
est AUCC, closely followed by IMPACT-LASSO, highlighting the
value of personalization based on machine-learned heterogeneity.
In contrast, the context-free baselines perform substantially worse,
indicating that indiscriminate allocation leaves most of the budget’s
potential untapped.

(a) ESR by Daily Budget (b) ESR by Model Robustness

Figure 3: Off-Policy Evaluation Results Across Budget Lev-
els. (a) We depict the ESR measured in the hold out data
across daily budgets. Each curve represents a different target-
ing policy. Satisfaction rates are based on the IPS estimator
(Equation 9). Shaded regions denote 95% bootstrap CIs. (b)
We compare hold-out ESR under nominal and robust model
versions for each targeting policy. Violin plots summarize
100 bootstrap samples over the same budget grid.

Table 1: Experimental Results (AUCC). We report the mean
and margin of error for each policy, based on 100 bootstrap
samples. Improvement is calculated as the percentage change
relative to the platform’s historical approach (HT).

Policy AUCC Improvement

HT 0.2114 ± 0.0009 /
50/50 0.1770 ± 0.0254 -16.27%
IMPACT-LASSO 0.5228 ± 0.0276 147.30%
IMPACT-RF 0.5455 ± 0.0287 158.04%

We also conduct point-wise comparisons across policies under a
consistent daily budget, fixed at a representative intermediate value
of ¥60. Table 2 reports IPS-based satisfaction estimates for each
policy in this setting. The two context-free baselines (HT and 50/50)
yield similar satisfaction rates of approximately 32.19%. IMPACT-
LASSO improves performance to 32.86%. IMPACT-RF achieves the
highest satisfaction rate of 34.79%, corresponding to an 8.07% im-
provement over the platform’s historical approach (HT).

Table 2: Experimental Results (ESR). We report the mean
and margin of error for each policy, based on 100 bootstrap
samples and a fixed budget of ¥60. Improvement is calculated
as the percentage change relative to the platform’s historical
approach (HT).

Policy ESR Budget Improvement

HT 0.3219 ± 0.0024 ¥60 /
50/50 0.3219 ± 0.0029 ¥60 0.00%
IMPACT-LASSO 0.3286 ± 0.0027 ¥60 2.09%
IMPACT-RF 0.3479 ± 0.0026 ¥60 8.07%
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6 Conclusions
This study introduces IMPACT, an inference-driven approach for
budget-constrained incentive allocation in customer service opera-
tions. We demonstrate how machine-learned treatment heterogene-
ity can be operationalized in high-frequency service settings, and
how robustness adjustments can support real-time resource alloca-
tion while preserving necessary control when uplift predictions are
noisy. The established pipeline offers a validated, deployable tool
for customer service practices, enabling proactive, cost-effective
incentive targeting that improves employee performance, customer
benefits, and operational efficiency.
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