IMPACT: An Inference-Driven Modeling Framework
for Cost-Effective Incentive Allocation in Service Operations

Yiheng An, Jia Li, Jeffrey D. Camm
School of Business, Wake Forest University

Liang Hu, Qingin Zhuge, Bingxin Jia
Alibaba Group

KDD 2025 Workshop - Causal Inference and Machine Learning in Practice
August 4, 2025



Customer Satisfaction is Important
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» Satisfied customers tend to stay with the company longer, spend more,
and become brand advocates.

* Customer satisfaction also positively predicts a firm’s profit, stock returns,
and other financial performance metrics.



Context: Taobao’s Customer Service

Case: A “case” refers to an online service session between an agent and a customer where
they communicate through text.

Case Difficulty: Difficulty level 1s labeled by a rule-based model (“Easy” vs “Difficult”)
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What We Did: A New Bonus System

* Business Goal: To enhance customer satisfaction by offering bonuses to human agents
* Project Goal: To design a new, performance-based bonus system for difficult cases
» Existing Approaches: Largely rely on pre-defined rules, which typically lead to
» limited adaptability to dynamic, context-specific information
» 1nefficiency in measuring and optimizing ROI
» lack of proactive capabilities at granular levels (e.g., case level)
* Our Approach:

A context-aware, individualized, proactive bonus system that adapts to large-scale,
high-frequency decision-making settings



The Bonus Offering Decision

The process of bonus notification and offering at Taobao customer service
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The Bonus Offering Decision

The process of bonus notification and offering at Taobao customer service
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The Bonus Targeting Problem

* Objective: Maximize the impact of bonuses on customer satisfaction for difficult cases
* Decision

* Choice: Whether to offer a bonus opportunity to the agent given a difficult case

* Timing: Case initiation phase, before interacting with the customer

* Amount: Cash amount based on post-service customer satisfaction rating

* Constraint: Daily bonus budget

Call for
* Quantifying the case-specific effects of bonuses on customer satisfaction

* A decision-making mechanism that integrates context factors



IMPACT:

System Overview
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Foundation:

RCT Data from a Field Experiment
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Causal ML Module: Contextualizing Bonus Effects
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Causal ML Module: Contextualizing Bonus Effects

* Key Idea: Use flexible ML predictors to represent the data generation process of an
underlying structural causal model

* Problem Formulation:

Case: i€l
Contextual Features: X; = (Xfre, XIPDSt) (pre-chat and post-chat features)
Satisfaction Outcome: Y; € {0,1} (whether the customer 1s satisfied)
Treatment: T; € {0, 1}
Conditional Bonus Effects (CATE):

() =Y | X; =x;, T =1] —E|Y; | Xj = x;, T; = 0]

* Key Benefits: Enables the estimation of case-level bonus effects conditional on high-
dimensional context features



Supervised ML Module:
Deployable Counterfactual Predictions

Algorithm Layer Application Layer

Causal ML Module Supervised Learning Module Optimization Module

i

Conditional Average Incentive Bonus

s | 1

: i -l

E [ Pseudo-Label CATE Predict |

! i Treatment Effect (CATE) ) r [- senee = L redietor ™ I Decisions JE“‘-FH Agent Workbench
; I : —'-[ Context Features \ t Notification

: I 0

: i I

: 7

| Knapsack-based

Counterfactual Causal

[ Cost Labels ’A‘ Cost Predictior

Learning Allocator

Randomized
Controlled Trial
(RCT) Data

Online Incentive

Post-Interaction Resource and

Context Data

Pre-Interaction

Context Data

Offering

Constraints Data

Data Layer




Supervised ML Module:
Deployable Counterfactual Predictions

* CATE Predictor: 7; = f (Xfre)
* Label: Case-level bonus effects (1.€., output from Causal ML models)

 Predictor Variables: Pre-interaction context features

« Cost Predictor: c; = g(X; )
e [abel: Case-level incentive costs

 Predictor Variables: Pre-interaction context features

* Key Benefits
* Supports any type of supervised ML models
* Enables predictions of bonus effects for any given case before the chat



Optimization Module:
Acting on Predicted Effects of Bonuses
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Optimization Module:
Acting on Predicted Effects of Bonuses

Problem Formulation

ZR(T):

Objective: Maximizing the total satisfaction uplift

Case: i €1
Bonus Decision: w; € {0, 1}
Bonus Cost: ¢;

Budget at the time of decision: by

Effect of Bonus: 7; € [f; — 0;, T; + 0]

Protection Function: A(w,T)
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of uplift uncertainty

N

= max Zf; wi — A(w, T)

iel

s.t. c;w; < by

Uncertainty in
uplift predictions

/

S.

iel
w; € {0,1} Viel

where A(w,T) := mgxz Oi Wi Sj

iel

t. Z sil T
, | I‘ ﬁ Robustness level

Isi|l <1 Viel

How much uplift deviation is
considered for each case

g




Policy Evaluation

Challenge: The counterfactual outcomes of satisfaction is not observable

Solution: We separate a holdout sample from the randomized field experiment to compare
the performance of our approach against several benchmark targeting policies

* Given a policy 7 : X — {0,1} and the estimated propensity score é;

* C(Calculate the inverse propensity score-weighted (IPS) estimator of mean satisfaction:

N 1 | 1 — wj Wi
Rips () = N Z = é: (1-7(x;)) yiT=0 + é—; 7(X;) Yi,T=1

Benefits: tel

* Cost advantages: Enables evaluation of an arbitrary number of targeting policies using
only one randomized sample

* Unbiased estimation: The IPS estimator provides an unbiased estimate of the expected
satisfaction 1f the proposed policy had been implemented.



Results

Expected Satisfaction Rate (ESR)
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Area Under the Cost Curve (AUUC)

Policy AUCC Improvement
HT 0.2114 + 0.0009 /

50/50 0.1770 + 0.0254 -16.27%
IMPACT-LASSO 0.5228 + 0.0276 147.30%
IMPACT-RF 0.5455 + 0.0287 158.04%

(b) ESR by Model Robustness
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* IMPACT consistently outperforms context-free benchmarks, without increasing total incentive spending

* Policies derived from the robust model generally achieve higher satisfaction rates than the nominal model



Conclusions

* We develop a model-based framework (1.e., IMPACT) to deliver cost-effective
incentives in service operations.

* Our system 1s “smart” because it
* enables context-aware, individualized, proactive bonus targeting
 adapts to large-scale, high-frequency decision-making settings

* demonstrates significant value gain compared to the rule-based benchmark
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