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Observational Causal Inference at Netflix

We love A/B testing at Netflix.

However, many important questions are not directly A/B testable:
For example, we want to know how streaming affects subscriber retention. . .
But A/B tests can only encourage our members to stream.

In general, data scientists need nimble tools to explore causal questions.

⇝ At Netflix, we maintain an internal Observational Causal Inference platform.
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Residuals-on-Residuals Regression

Initially, our platform implemented residuals-on-residuals regression (RORR):

Suppose Yi and Ti are determined by a Partially Linear Model (PLM),

Yi = θTi + g(Xi ) + ei and Ti = h(Xi ) + ui .

Estimate θ by regressing Ỹi = Yi − ĝ(Xi ) on T̃i = Ti − ĥ(Xi ).

Pros

Easy to explain

Scalable to large datasets (OLS is
RORR!)

Appropriate for many questions

Cons

Only estimates Average Treatment
Effects (ATEs) if PLM is correct
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Misspecification Bias of RORR for Binary Treatments

Suppose the true model is:

Yi = θiTi + g(Xi ) + ei , Ti ∈ {0, 1},

that is, treatment effects are heterogeneous and treatment is binary.

The bias of θ̂ relative to the ATE E [θi ] is well understood:
1

Units with more variable treatment (πi closer to
1
2
) receive higher weights.

The resulting bias is proportional to the covariance between θi and πi (1− πi ).

For example, if units with π ≈ 1
2
have larger θi , θ̂ is positively biased.

1E.g., Angrist and Krueger 1999
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Misspecification Bias of RORR for Continuous Treatments

What about continuous treatments?

Yi = f (Ti ) + g(Xi ) + ei .

Two potential sources of treatment effect heterogeneity:
1 The dose-response function fi (Ti ) may be heterogeneous.
2 Even if fi is homogeneous, nonlinearity in f also induces heterogeneity.

We focus on the latter.
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Simple Example

In many practical applications:

Treatments are right-skewed ⇝ conditional variance of T is increasing in E [T |X ].

Dose-response functions exhibit diminishing returns, so f ′ is decreasing in T .

RORR is variance-weighted, skewing θ̂ towards f ′ at larger values of T . . .

. . . leading to attenuation bias E [θ̂] < E [f ′(T )].
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Bias Decomposition

Formally, the bias of RORR can be decomposed into two parts:

E [(Ti − h(Xi ))
2f ′(T ∗

i )]

E [(Ti − h(Xi ))2]
− E [f ′(Ti )] (1)

=
E [(Ti − h(Xi ))

2f ′(Ti )]

E [(Ti − h(Xi ))2]
− E [f ′(Ti )]︸ ︷︷ ︸

:=A

+
E [(Ti − h(Xi ))

2f ′(T ∗
i )]

E [(Ti − h(Xi ))2]
− E [(Ti − h(Xi ))

2f ′(Ti )]

E [(Ti − h(Xi ))2]︸ ︷︷ ︸
:=B

A is the familiar variance-weighting bias, which also appears in the binary case.

B is unique to multi-valued treatments:

θ̂ cannot be interpreted as a weighted average of derivatives at observed treatments.
Instead, it is a weighted average of derivatives at interpolated treatments.
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Returning to Example

The RORR estimand E [θ̂] is a weighted average of derivatives. . .

. . . evaluated on an “effective” treatment distribution that is not the observed one.
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Application at Netflix

Treatment is skewed ✓

Dose-response function exhibits
diminishing returns ✓

⇝ RORR skews towards higher values
of t, where f ′ is negative.

Apoorva Lal and Winston Chou (AWS, Netflix) Representative Estimates of Causal Effects August 1, 2025 9 / 15



Application at Netflix

Treatment is skewed ✓

Dose-response function exhibits
diminishing returns ✓

⇝ RORR skews towards higher values
of t, where f ′ is negative

Apoorva Lal and Winston Chou (AWS, Netflix) Representative Estimates of Causal Effects August 1, 2025 10 / 15



Application at Netflix

Treatment is skewed ✓

Dose-response function exhibits
diminishing returns ✓

⇝ RORR skews towards higher values
of t, where f ′ is negative

Apoorva Lal and Winston Chou (AWS, Netflix) Representative Estimates of Causal Effects August 1, 2025 11 / 15



RORR Estimate is Actually Negative

RORR Std. Err. 95% CI

-0.0038 0.001 (-0.005, -0.002)
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AIPW Yields a More Representative Estimate. . .

RORR Std. Err. 95% CI

-0.0038 0.001 (-0.005, -0.002)

AIPW Std. Err. 95% CI

5.343 0.010 (5.324, 5.362)
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. . .While Enabling Useful Diagnostics

Figure: Balance in Pre-Treatment Outcomes After Inverse Propensity Score Weighting
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Thanks!

Link to paper:
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