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Abstract
Many marketing applications, including credit card incentive pro-
grams, offer rewards to customers exceeding specific spending
thresholds to encourage increased consumption. Quantifying the
causal effect of these thresholds on customers is crucial for effective
marketing strategy design. While regression discontinuity design is
a common method for such causal inference tasks, its assumptions
can be violated when customers, aware of the thresholds, strate-
gically manipulate their spending to qualify for the rewards. To
address this issue, we propose a novel framework for estimating the
causal effect of thresholds on customers under their manipulation.
The core idea is to model the observed spending distribution as a
mixture of two distributions: one representing customers strate-
gically affected by the threshold and the other representing those
unaffected. To fit the mixture model, we adopt a Bayesian approach,
which enables valid causal effect estimation with proper uncer-
tainty quantification. Furthermore, we extend this framework to
a hierarchical Bayesian setting to estimate heterogeneous causal
effects across customer subgroups, allowing for stable inference
even with small subgroup sample sizes. We demonstrate the effec-
tiveness of our proposed methods through simulation studies and
show that our proposed framework yields more accurate estimates
of the causal effect of thresholds on customers compared to naive
regression discontinuity design methods.
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Figure 1: Conceptual illustration of our proposed mixture
model (red). Modeling the observed distribution (skyblue) as
a mixture of a non-bunching distribution (green, unaffected
by the threshold) and a strategic bunching distribution (blue,
distorted near the threshold).
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1 Introduction
Estimating causal effects of thresholds is important for effective
marketing strategy design. Many marketing applications, including
loyalty programs [12, 16] and credit card incentive programs 1,
offer rewards to customers who exceed specific spending thresholds
to encourage increased consumption. These thresholds are often
set to incentivize customers to spend more, and understanding
their causal effects on customer behavior is crucial to optimizing
marketing strategies. To estimate the causal effect of thresholds
on customer behavior, regression discontinuity design (RDD) is a
representative method [8, 23]. RDD can estimate the causal effect
of a threshold by using local randomization around the threshold,
which means that the treatment assignment for customers around
the threshold is assumed to be random. Many studies have applied
RDD because this method is “one of the most credible research
designs in the social, behavioral, biomedical and statistical sciences
for program evaluation and causal inference in the absence of an
experimentally assigned treatment” [5] and is “the perception that
the identification assumptions are quite weak” [15].

However, the assumptions of RDD can be violated when cus-
tomers, aware of the thresholds, strategically manipulate their

1https://creditcards.chase.com/rewards-credit-cards/sapphire/preferred
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spending to qualify for the rewards [10, 14, 15]. For example, incen-
tive programs where rewards are offered to customers who exceed
a spending threshold are likely to lead to strategic behavior. The
assumption of local randomization is supported by the continu-
ity condition [8], which states that the potential outcomes of the
customers just below and above the threshold are the same. This
condition cannot be satisfied when customers can manipulate their
behavior to reach the thresholds because they may have different
potential outcomes depending on whether they are above or below
the threshold [10, 14, 15]. To address the manipulation problem,
an alternative causal inference framework called bunching estima-
tion [3] is advocated in the economics literature, by assuming a
discontinuous change in the slope of the function at the threshold.
However, such an approach relies on the assumption that a segment
of the distribution just before the threshold, where the probability
density function becomes zero, is what gets transformed into the
observed “bunch” at the threshold. Consequently, the practical ap-
plicability of these methods can be limited in scenarios where such
a zero-density region cannot be assumed, which would often arise
in marketing applications.

To overcome the limitations of causal inference under manipula-
tion, we propose a novel framework for estimating the causal effect
of thresholds on customers under their manipulation. A key feature
of the proposed method is to employ a mixture of two distributions:
one representing customers strategically affected by the thresh-
old and the other representing those unaffected (see Figure 1). We
adopt a Bayesian approach to fit the mixture model, which enables
valid causal effect estimation with proper uncertainty quantifica-
tion. Hence, we call the proposal Bayesian Modeling of Threshold
Manipulation via Mixtures (BMTM) in what folllows. This approach
allows us to successfully capture the treated and untreated popu-
lations without relying on implausible assumptions. Furthermore,
we can natually extend BMTM to a hierarchical Bayesian setting to
estimate heterogeneous causal effects across customer subgroups,
which we call hierarchical BMTM (HBMTM). Although the demand
for pursuing heterogeneous causal effects is increasing in market-
ing, simply applying the proposed method to subgroups separately
may lead to unstable estimates when the sample sizes within sub-
groups are small. By adopting a fully Bayesian framework, we can
naturally introduce a hierarchical structure that borrows informa-
tion across subgroups, enabling stable inference for heterogeneous
causal effects.

We demonstrate the effectiveness of our proposed framework
through simulation studies. These studies show that our proposed
methods achieve more accurate and reliable estimates of causal
effects than the RDD methods. In particular, HBMTM provides
stable estimates of heterogeneous causal effects across customer
subgroups in scenarios with small subgroup sample sizes.

2 Related Work
In this section, we review related work on bunching estimation and
methods to estimate heterogeneous causal effects using RDD. The
bunching estimation examines the discontinuity in the distribution
of the running variable. In the literature, there are two types of
discontinuities: kinks, where the slope of an incentive schedule
changes [e.g. 19] and notches, where the level of the incentive

changes discontinuously [e.g. 20]. Marketing incentive programs,
which offer a discrete reward upon reaching a threshold, typically
fall into the notch category. In addition to the literature in Sec-
tion 1, the existing bunching estimation methods [e.g. 13] assume
sharp bunching, where individuals can precisely target and locate
themselves at the threshold. However, in real-world marketing
scenarios, this assumption is often too strong because customers
may not be fully aware of the exact threshold value or may face
constraints and imperfect control over their spending behavior.
In contrast to existing approaches, the proposed method provides
a simple method for estimating the causal effect under plausible
assumptions in marketing applications.

In RDD (without threshold manipulation), there are some meth-
ods to estimate the heterogeneous treatment effect between sub-
groups. For example, Sugasawa et al. [21] developed a hierarchical
model to estimate the subgroup-specific causal effect, and Alcantara
et al. [1] and Tao et al. [22] employed the Bayesian additive regres-
sion tree to capture heterogeneous effects. However, these methods
cannot be applied to the situation under threshold manipulation. To
our knowledge, no attempts have been made to estimate the hetero-
geneous causal effects under threshold manipulation. Hence, this
paper would be the first to provide an effective method to estimate
heterogeneous causal effects under threshold manipulation.

3 Causal Inference under Threshold
Manipulation

Consider the problem of estimating the causal effect of a threshold
𝐾 on the behavior of customer spending with the potential outcome
framework [9, 18]. Let𝑌 (1) be the potential outcome with threshold
𝐾 and 𝑌 (0) be the potential outcome without threshold. Assume
that there are two types of customers: those who strategically ex-
ceed a specific threshold𝐾 (i.e., bunching customers) and those who
do not exceed the threshold (i.e., non-bunching customers). The
bunching customers are those who, in the presence of a threshold,
can exceed that threshold and, by doing so, obtain greater benefits
than in a situation without any threshold. These customers are
likely to increase their spending to exceed the threshold or adjust
their spending just to exceed the threshold to maximize their ben-
efits. Conversely, non-bunching customers are those who, in the
presence of a threshold, either cannot exceed it or cannot gain any
additional benefit by exceeding it compared to a situation without
any threshold. Among the non-bunching customers are customers
for whom the “pain” (or cost) of increasing spending to surpass the
threshold exceeds the utility gained from receiving the incentive,
and customers who would already surpass the threshold without
any threshold. Consequently, it is assumed that the bunching cus-
tomers are those whose potential outcome without the threshold,
𝑌 (𝑡 ) (for 𝑡 ∈ {0, 1}), falls within the neighborhood of the threshold
𝐾 . Non-bunching customers, in contrast, are those whose 𝑌 (𝑡 ) lies
outside this neighborhood.

In the framework, the average treatment effect of the threshold
on customers is defined as the difference in their potential outcomes
with and without the threshold as follows.

𝜏 := E
[
𝑌 (1) − 𝑌 (0) | 𝑌 𝐼 ≤ 𝑌 (𝑡 ) ≤ 𝑌 𝐼

, 𝑡 ∈ {0, 1}
]

(1)
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where the interval [𝑌 𝐼 , 𝑌
𝐼 ] defines the neighborhood of the thresh-

old 𝐾 . This definition can be interpreted as the average treatment
effect of the threshold on bunching customers, which is conceptu-
ally similar to the average treatment effect on the treated (ATT) in
the potential outcome framework.

Furthermore, to account for heterogeneity between customer
subgroups, this definition can easily be extended to estimate
subgroup-specific causal effects. Let customers be divided into 𝐺
subgroups and let 𝑌𝑔(1) and 𝑌𝑔(0) be the potential outcomes with
and without the threshold for the 𝑔th subgroup, respectively. For
the 𝑖th customer in the 𝑔th subgroup, where 𝑖 = 1, . . . , 𝑛𝑔 and
𝑔 = 1, . . . ,𝐺 , the heterogeneous causal effect of the threshold on
customers is defined as follows:

𝜏𝑔 := E
[
𝑌𝑔(1) − 𝑌𝑔(0) | 𝑌𝑔𝐼 ≤ 𝑌 (𝑡 ) ≤ 𝑌𝑔

𝐼
, 𝑡 ∈ {0, 1}

]
(2)

where the interval [𝑌𝑔𝐼 , 𝑌𝑔
𝐼 ] defines the neighborhood of the thresh-

old 𝐾 for the 𝑔th subgroup. This definition allows us to estimate
the heterogeneous causal effect of a threshold on customers in
each subgroup, which is important for understanding how different
subgroups of customers respond to the threshold.

4 Bayesian Modeling of Threshold
Manipulation via Mixtures

4.1 Mixture Model for Bunching and
Non-bunching Distributions

To estimate the causal effect of a threshold on bunching customers
𝜏 , the observed data 𝑦𝑖 for each customer 𝑖 = 1, . . . , 𝑛 are as-
sumed to be independent and identically distributed samples from
a mixture distribution. The mixture distribution is assumed to be a
two-component mixture distribution representing non-bunching
customers (called non-bunching distribution) and bunching cus-
tomers (called bunching distribution). The non-bunching distribu-
tion is assumed to be the counterfactual distribution of the observed
data𝑦𝑖 that would have been observed had the threshold not existed.
Since the bunching distribution consists of bunching customers, it
is assumed that the observed data 𝑦𝑖 of the bunching distribution
clusters are just above the threshold 𝐾 .

To model the observed data, we adopt a mixture model that
captures the non-bunching and bunching distributions. The non-
bunching distribution is modeled using a normal distribution, a
common choice for modeling continuous data. The normal distribu-
tion is characterized by its mean and standard deviation, which can
be estimated from the observed data. The bunching distribution is
modeled using a skew normal distribution [2], which is a flexible
distribution that can capture the skewness and high concentra-
tion of data observed near the threshold 𝐾 (fixed) resulting from
customer manipulation.

For the observed data𝑦𝑖 , we assume the followingmixture model:

𝑦𝑖 ∼ 𝜋 · 𝑓𝑆𝑁 (𝑦𝑖 | 𝐾, 𝜎1, 𝛼1) + (1 − 𝜋 ) · 𝑓𝑁 (𝑦𝑖 | 𝜇2, 𝜎2), (3)

where 𝑓𝑆𝑁 is the probability density function of the skew normal
distribution, and 𝑓𝑁 is the probability density function of the nor-
mal distribution. The parameters of the skew normal distribution
are 𝐾 , 𝜎1, and 𝛼1, where 𝐾 is the fixed threshold, 𝜎1 is the scale
parameter, and 𝛼1 is the shape parameter. The parameters of the

normal distribution are 𝜇2 and 𝜎2, where 𝜇2 is the mean and 𝜎2 is
the standard deviation. In the model (3), 𝜋 ∈ (0, 1) is the mixing
proportion, which represents the proportion of bunching customers
in the observed data. Note that the unknown parameters in the
model (3) are Θ = (𝜎1, 𝛼1, 𝜇2, 𝜎2, 𝜋 ).

By introducing a binary latent variable 𝑧𝑖 ∈ {0, 1}, the mixture
model (3) can also be expressed as

𝑦𝑖 |(𝑧𝑖 = 1) ∼ 𝑓𝑆𝑁 (𝑦𝑖 | 𝐾, 𝜎1, 𝛼1), 𝑦𝑖 |(𝑧𝑖 = 0) ∼ 𝑓𝑁 (𝑦𝑖 | 𝜇2, 𝜎2)

with 𝑃 (𝑧𝑖 = 1) = 1 − 𝑃 (𝑧𝑖 = 0) = 𝜋 . Here 𝑧𝑖 can be interpreted
as a latent (unobserved) binary indicator representing that the 𝑖th
customer is included in the buncing (𝑧𝑖 = 1) and non-bunching
(𝑧𝑖 = 0) groups. Hence, the observed data𝑦𝑖 can be regarded as𝑌𝑖 (𝑧𝑖 ),
where 𝑌𝑖 (1) and 𝑌𝑖 (0) are potential outcomes of the 𝑖th customer.
This formulation implies that either of the potential outcomes can
be observed, but we do not know which outcome is observed, since
the latent group membership 𝑧𝑖 is not observed. This contrasts
with the standard potential outcome framework in causal inference,
where the treatment assignment is observed.

4.2 Average Treatment Effect and Bayesian
Inference

To obtain the average treatment effect 𝜏 defined in (1), we need
to consider the interval [𝑌 𝐼 , 𝑌

𝐼 ] as the neighborhood of the
threshold 𝐾 . Since we can identify the bunching distribution
𝑓𝑆𝑁 (𝑦𝑖 | 𝐾, 𝜎1, 𝛼1), a reasonable choice would be the interval
[𝑌 𝐼

𝑐 (𝜎1, 𝛼1), 𝑌 𝐼
𝑐 (𝜎1, 𝛼1)] determined by the (1 − 𝑐)% highest density

interval (HDI) of the bunching distribution for arbitrary small 𝑐 (e.g.
𝑐 = 0.01). Note that the interval is a function of the unknown param-
eters (𝜎1, 𝛼1), in the bunching distribution. Then, the expectation
of treated potential outcome is

E
[
𝑌 (1) | 𝑌 𝐼

𝑐 (𝜎1, 𝛼1) ≤ 𝑌 (1) ≤ 𝑌 𝐼
𝑐 (𝜎1, 𝛼1)

]
= (1 − 𝑐)−1 ©­­«𝐾 + 𝜎1

𝛼1√︃
1 + 𝛼2

1

·
√︂

2
𝜋

ª®®¬ ,
(4)

using the expectation of the skew normal distribution [2] and that
fact that P(𝑌 𝐼

𝑐 (𝜎1, 𝛼1) ≤ 𝑌 (1) ≤ 𝑌 𝐼
𝑐 (𝜎1, 𝛼1)) = 1−𝑐 from the definition

of the interval. On the other hand, the expectation of the non-
bunching distribution in the interval [𝑌 𝐼 , 𝑌

𝐼 ] (i.e., the expectation
of the untreated potential outcome) can also be obtained in the
close form as a function of (𝜇2, 𝜎2). Therefore, under the mixture
model (3), the average treatment effect (1) can be expressed as

𝜏(Θ) ≡ (1 − 𝑐)−1 ©­­«𝐾 + 𝜎1
𝛼1√︃

1 + 𝛼2
1

·
√︂

2
𝜋

ª®®¬ − 𝜇2

− 𝜎2
𝜙(𝑌 𝐼

𝑐 (𝜎1, 𝛼1); 𝜇2, 𝜎2) − 𝜙(𝑌 𝐼
𝑐 (𝜎1, 𝛼1); 𝜇2, 𝜎2)

Φ(𝑌 𝐼
𝑐 (𝜎1, 𝛼1); 𝜇2, 𝜎2) − Φ(𝑌 𝐼

𝑐 (𝜎1, 𝛼1); 𝜇2, 𝜎2)
,

(5)

where 𝜙(·;𝑎, 𝑏) and Φ(·;𝑎, 𝑏) are the probability density and cumu-
lative distribution function of the normal distributions with mean
𝑎 and variance 𝑏, respectively.

For fitting the mixture model (3), we adopt a Bayesian ap-
proach to estimate the parameters of the model. Specifically, we
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employ the prior distributions 𝜎1 ∼ 𝑁 (𝑚𝜎1 , 𝑠2
𝜎1 ), 𝛼1 ∼ 𝑁 (𝑚𝛼1 , 𝑠

2
𝛼1 ),

𝜇2 ∼ 𝑁 (𝑚𝜇2 , 𝑠
2
𝜇2 ), 𝜎2 ∼ 𝑁 (𝑚𝜎2 , 𝑠

2
𝜎2 ), 𝜋 ∼ Beta(𝛼𝜋 , 𝛽𝜋 ), where𝑚𝜎1 ,

𝑠2
𝜎1 ,𝑚𝛼1 , 𝑠2

𝛼1 ,𝑚𝜇2 , 𝑠2
𝜇2 ,𝑚𝜎2 , 𝑠2

𝜎2 , 𝛼𝜋 , and 𝛽𝜋 are hyperparameters
specified by a user. To effectively sample from the posterior dis-
tribution of the parameters Θ, we use the Markov Chain Monte
Carlo (MCMC) algorithm. For MCMC sampling, we use the MCMC
algorithm implemented in the probabilistic programming language
stan [4]. Stan is a probabilistic programming language widely used
for Bayesian modeling, which takes advantage of the Hamiltonian
Monte Carlo algorithm [6] to efficiently sample complex probability
distributions. Based on the posterior samples of Θ, one can approxi-
mate the posterior distribution of the causal effect 𝜏 (Θ), which gives
not only a point estimate but also a measure of uncertainty such as
the credible interval 95%.

In this context, there are three advantages to using the Bayesian
approach for mixture models. First, the Bayesian approach can in-
corporate prior information about the parameters. In the mixture
model (3), the bunching distribution is expected to be concentrated
around the threshold 𝐾 , and the normal distribution is expected
to be more spread. We can incorporate this prior information into
the model by specifying appropriate prior distributions for the pa-
rameters. Second, the Bayesian approach can provide a natural
way to quantify uncertainty in the parameter estimates and their
functions. Although the causal effect 𝜏(Θ) given in (5) is a rather
complicated function of Θ, its uncertainty can be easily quantified
through posterior distributions of Θ, which will be useful for mak-
ing more informed decisions based on the estimates. Finally, the
Bayesian approach can easily be extended to hierarchical models,
which allows us to estimate heterogeneous causal effects across
customer subgroups 𝜏𝑔 , as discussed in the subsequent section.

4.3 Pursuing heterogeneous treatment effect via
hierarchical Bayesian modeling

The proposed method can be extended to a hierarchical Bayesian
setting to estimate heterogeneous causal effects between subgroups
of customers. In what follows, we assume that the threshold is
common to all subgroups and is 𝐾 . For 𝑔 = 1, . . . ,𝐺 with 𝐺 being
the number of subgroups, the mixture model for the 𝑔th subgroup
can be defined as follows:

𝑦
(𝑔)
𝑖

∼ 𝜋𝑔 · 𝑓𝑆𝑁 (𝑦𝑖 | 𝐾, 𝜎 (𝑔)
1 , 𝛼

(𝑔)
1 ) + (1 − 𝜋𝑔) · 𝑓𝑁 (𝑦𝑖 | 𝜇(𝑔)

2 , 𝜎
(𝑔)
2 ), (6)

where 𝑦(𝑔)
𝑖

is the observed data for the 𝑖th customer in the 𝑔th
subgroup, and 𝜋𝑔 is the mixing proportion for the 𝑔th subgroup.
Here 𝜎 (𝑔)

1 , 𝛼
(𝑔)
1 , 𝜇(𝑔)

2 and 𝜎 (𝑔)
2 are unknown subgroup-specific pa-

rameters. The mixing proportion 𝜋𝑔 represents the proportion of
bunching customers in the observed data for the 𝑔th subgroup. The
causal effect of the threshold on customers 𝜏𝑔 can be defined in
the same way as (5) as a function of subgroup-specific parameters,
Θ𝑔 = (𝜎 (𝑔)

1 , 𝛼
(𝑔)
1 , 𝜇

(𝑔)
2 , 𝜎

(𝑔)
2 , 𝜋𝑔).

The subgroup-specific parameters are hierarchically modeled to
borrow information from subgroups for more stable estimates. A
critical aspect in specifying such hierarchical models, particularly
for Bayesian estimation using MCMC algorithms, is the choice be-
tween centered and non-centered parameterizations [e.g. 17, 24].

To enhance sampling efficiency and mitigate potential strong corre-
lations between hierarchical levels of parameters, especially when
group variances are small or data per group are limited, we employ
a non-centered parameterization for several of these group-specific
parameters. The detailed specifications for these parameters are as
follows.

𝜎
(𝑔)
1 = exp(𝜇𝜎1 + 𝜎𝜎1 · 𝑧

(𝑔)
𝜎1 ), 𝛼 (𝑔)

1 = 𝜇𝛼1 + 𝜎𝛼1 · 𝑧
(𝑔)
𝛼1 ,

𝜎
(𝑔)
2 = exp(𝜇𝜎2 + 𝜎𝜎2 · 𝑧

(𝑔)
𝜎2 ), 𝜇(𝑔)

2 = 𝜇𝜇2 + 𝜎𝜇2 · 𝑧
(𝑔)
𝜇2 ,

𝜋𝑔 = logit−1(𝜇𝜋 + 𝜎𝜋 · 𝑧(𝑔)
𝜋 ),

where 𝑧(𝑔)
𝜎1 , 𝑧

(𝑔)
𝛼1 , 𝑧

(𝑔)
𝜇2 , 𝑧

(𝑔)
𝜎2 , 𝑧

(𝑔)
𝜋 ∼ 𝑁 (0, 1). The above formulation in-

dicates that the group-specific parameters are different but gener-
ated from a common distribution, known as random effects. For
unknown parameters of the mixture model, we assign prior distri-
butions as follows:

𝜇𝜎1 ∼ 𝑁 (𝑚𝜇𝜎1 , 𝑠
2
𝜇𝜎1 ), 𝜎𝜎1 ∼ 𝑁 (𝑚𝜎𝜎1 , 𝑠

2
𝜎𝜎1 ), 𝜇𝛼1 ∼ 𝑁 (𝑚𝜇𝛼1 , 𝑠

2
𝜇𝛼1 ),

𝜎𝛼1 ∼ 𝑁 (𝑚𝜎𝛼1 , 𝑠
2
𝜎𝛼1 ), 𝜇𝜎2 ∼ 𝑁 (𝑚𝜇𝜎2 , 𝑠

2
𝜇𝜎2 ), 𝜎𝜎2 ∼ 𝑁 (𝑚𝜎𝜎2 , 𝑠

2
𝜎𝜎2 ),

𝜇𝜇2 ∼ 𝑁 (𝑚𝜇𝜇2 , 𝑠
2
𝜇𝜇2 ), 𝜎𝜇2 ∼ 𝑁 (𝑚𝜎𝜇2 , 𝑠

2
𝜎𝜇2 ), 𝜇𝜋 ∼ 𝑁 (𝑚𝜇𝜋 , 𝑠

2
𝜇𝜋 ),

𝜎𝜋 ∼ 𝑁 (𝑚𝜎𝜋 , 𝑠
2
𝜎𝜋 ).

Given the prior distributions, the posterior distribution of the group-
specific parameters Θ𝑔 as well as the parameters in the random-
effects distributions can be approximated by an MCMC algorithm.
Then, the posterior samples of Θ𝑔 give the posterior distribution of
the subgroup-specific causal effect 𝜏(Θ𝑔).

4.4 Isolating the Non-Bunching Distribution by
Excluding the Bunching Region

As a variation to our primary mixture model, we explore an alterna-
tive approach designed to more explicitly isolate the parameters of
the non-bunching distribution by systematically excluding observa-
tions likely belonging to the bunching distribution. This approach
potentially provides a more robust estimation of the underlying
non-bunching distribution, which is the counterfactual distribution
used to calculate the causal effect.

The procedures for this alternative approach are as follows. First,
we estimate a two-component mixture model with the bunching
distribution and the non-bunching distribution using the entire
dataset described in Equation (3). Second, we identify and exclude
the region predominantly influenced by the bunching behavior.
This is achieved by defining the interval [𝑌 𝐼 , 𝑌

𝐼 ] based on the esti-
mated parameters of the bunching distribution. Observations falling
within this interval are considered to be influenced by the bunching
behavior and are excluded from the subsequent analysis. Third, the
remaining observations, those falling outside the interval, are then
used to re-estimate the parameters of the non-bunching distribution,
which now serves as our primary estimate of the counterfactual
distribution. By systematically excluding the bunching region, we
aim to obtain a more accurate representation of the non-bunching
distribution, which is crucial for estimating the threshold’s causal
effect on customers. Finally, the causal effect of the threshold on
customers 𝜏 is calculated as the difference between the mean of the
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Figure 2: Simulation dataset from a specific random seed,
featuring a mixture model of bunching and non-bunching
distributions (threshold 𝐾 = 50), with data from 𝐺 = 100
subgroups overlaid.

bunching distribution and the mean of the non-bunching distribu-
tion in the interval [𝑌 𝐼 , 𝑌

𝐼 ] as in Section 4.1. The procedures for the
alternative approach can be applied to the hierarchical Bayesian
model in Section 4.3 in a similar way.

5 Experiments
We demonstrate the effectiveness of our proposed methods by
comparing their performance with the standard RDD method. We
assume that the customer threshold 𝐾 is known and set to 50,
and the observed data originate from a population structured into
𝐺 = 100 distinct subgroups. The observed data for each subgroup
𝑔 (𝑔 = 1, . . . , 100) are generated by a mixture model consisting of a
bunching distribution and a non-bunching distribution, weighted
by subgroup-specific proportions 𝜋𝑔 and 1 − 𝜋𝑔 , respectively. The
parameters defining the distributions of components, including
the proportions, can vary from subgroup to subgroup. We equally
divided 𝐺 groups into four clusters and set the same number of
group-specific sample sizes 𝑛𝑔 (𝑔 = 1, . . . ,𝐺) to the same values
within the same clusters. The sample sizes of the clusters are set to
(50, 100, 200, 300).

In this simulation, the parameters of Equation (6) are set as
follows:

𝜋𝑔 = 1/(1 + exp (−𝜂𝑔)), 𝜂𝑔 ∼ 𝑁 (𝜇𝜂 , 𝜎2
𝜂 ),

𝜇𝜂 ∼ 𝑁 (−2, 0.12), 𝜎𝜂 ∼ 𝑁 +(0.5, 0.12),

𝜎
(𝑔)
1 ∼ 𝑁 (𝜇𝜎1 , 𝜎

2
𝜎1 ), 𝜇𝜎1 ∼ 𝑁 (2, 0.12), 𝜎𝜎1 ∼ 𝑁 +(0.25, 0.052),

𝛼
(𝑔)
1 ∼ 𝑁 (𝜇𝛼1 , 𝜎

2
𝛼1 ), 𝜇𝛼1 ∼ 𝑁 (1, 0.12), 𝜎𝛼1 ∼ 𝑁 +(0.25, 0.052),

𝜇
(𝑔)
2 ∼ 𝑁 (𝜇𝜇2 , 𝜎

2
𝜇2 ), 𝜇𝜇2 ∼ 𝑁 (40, 0.12), 𝜎𝜇2 ∼ 𝑁 +(2, 0.052),

𝜎
(𝑔)
2 ∼ 𝑁 (𝜇𝜎2 , 𝜎

2
𝜎2 ), 𝜇𝜎2 ∼ 𝑁 (10, 0.12), 𝜎𝜎2 ∼ 𝑁 +(1, 0.052),

where 𝑁 +(·) denotes a truncated normal distribution with lower
bound 0. Figure 2 shows the generated data set from a specific ran-
dom seed, featuring amixture model of bunching and non-bunching
distributions (threshold 𝐾 = 50), with data from subgroups𝐺 = 100
overlaid.

To evaluate the performance of our proposed method, we per-
form simulation replications of 𝑀 = 100 with different random
seeds. The evaluation focuses on the methods’ point and interval
estimation performance. To evaluate the models in terms of point
estimation performance, we use the mean squared error (MSE)
given by

MSE =
1
𝑀

𝐺∑︁
𝑔=1

(
𝜏𝑔 − 𝜏𝑔

)2
, (7)

To evaluate the Bayesian models in terms of their interval estima-
tion performance, we use the interval score (IS) [7] given by

IS =
1
𝐺

𝐺∑︁
𝑔=1

{
(𝑢𝑔 − 𝑙𝑔) +

2
𝛼

(𝑙𝑔 − 𝜏𝑔)1(𝜏𝑔 < 𝑙𝑔) +
2
𝛼

(𝜏𝑔 − 𝑢𝑔)1(𝜏𝑔 > 𝑢𝑔)
}
,

(8)

where 𝑙𝑔 and 𝑢𝑔 are the lower and upper bounds of the 100(1 − 𝛼)%
HDI for each subgroup 𝑔, respectively, and 1(·) is the indicator
function. The IS increases when the prediction interval generated
by the model is too broad and increases when the observed value
falls outside of this interval. Therefore, a smaller IS value indicates
that a more appropriate interval estimation is achieved. In this
paper, 𝛼 is 0.05.

For the simulated dataset, we fit the proposed BMTM and
HBMTMmodels. Eachmodel is implemented using two distinct esti-
mation strategies: primary and alternative approaches. The primary
approach uses the mixture model described in Equation (3) and (6),
while the alternative approach uses the procedures described in
Section 4.4. These methods are denoted as BMTM-P and HBMTM-P
for the primary approach and BMTM-A and HBMTM-A for the
alternative approach. Bayesian estimation is performed using the
MCMC algorithm with four chains, each with 3000 iterations, a
warm-up period of 3000 iterations, and adapt delta to 0.80.

For BMTM, we set the priors for each relevant parameter as
follows:

𝑚𝜎1 = 0, 𝑠𝜎1 = 2, 𝑚𝛼1 = 0, 𝑠𝛼1 = 5, 𝑚𝜇2 = 0, 𝑠𝜇2 = 30,
𝑚𝜎2 = 0, 𝑠𝜎2 = 30, 𝛼𝜋 = 3, 𝛽𝜋 = 7,

For HBMTM, we set the priors for each relevant parameter as
follows:

𝑚𝜇𝜎1 = 0, 𝑠𝜇𝜎1 = 0.3, 𝑚𝜎𝜎1 = 0, 𝑠𝜎𝜎1 = 0.3,
𝑚𝜇𝛼1 = 0, 𝑠𝜇𝛼1 = 1, 𝑚𝜎𝛼1 = 0, 𝑠𝜎𝛼1 = 1, 𝑚𝜇𝜎2 = 0, 𝑠𝜇𝜎2 = 1,

𝑚𝜎𝜎2 = 0, 𝑠𝜎𝜎2 = 0.3, 𝑚𝜇𝜇2 = 40, 𝑠𝜇𝜇2 = 10, 𝑚𝜎𝜇2 = 0, 𝑠𝜎𝜇2 = 10,
𝑚𝜇𝜋 = −1.4, 𝑠𝜇𝜋 = 2, 𝑚𝜎𝜋 = 0, 𝑠𝜎𝜋 = 2,

For comparison, we also fit an RDD method. In our research
problem, the variable 𝑦 (see Figure 2) functions simultaneously
as the outcome variable and, in effect, as the running variable,
the assignment variable for the treatment. This makes it difficult
to distinguish the outcome and the running variables distinctly,
as is typically done in standard RDD. Therefore, we employ an
RDD-based method that attempts to capture the magnitude of the
threshold effect on the distribution of 𝑦 by evaluating the disconti-
nuity in the distribution of the variable 𝑦 around the threshold 𝐾 .
Specifically, kernel density estimation is performed for the variable
𝑦 immediately before and after the threshold 𝐾 , and the difference
between the resulting density estimates is used as the causal effect
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Table 1: Simulation results of the proposed and baselinemeth-
ods in the subgroup setting. The boldface values indicate the
best performance among the methods.

Method MSE IS
RDD 6.773

BMTM-P 0.678 3.424
BMTM-A 0.662 3.138

HBMTM-P 0.185 1.177
HBMTM-A 0.186 1.180

of the threshold on customers. Furthermore, when kernel density
estimation is applied, since the threshold 𝐾 represents a distinct
boundary, a boundary correction is applied to mitigate boundary
bias [11]. To perform the RDD analysis, the bandwidth is estab-
lished as 15 from the threshold (range: 35 to 65), considering the
sample size needed for analytical stability around this point.

Table 1 summarizes the average simulation results (over𝑀 = 100
random seeds) for the proposed methods and the baseline method
in the subgroup setting. In general, our proposed methods demon-
strated superior performance to the RDD baselinemethod. HBMTM-
P performed best in point estimation (MSE) and interval estima-
tion (IS). HBMTM-A also delivered a strong performance, with its
results eminently comparable to those of HBMTM-P. These results
suggest that in the subgroup setting, HBMTM-P and HBMTM-A
effectively estimate the causal effect of the threshold on customers,
even when the sample size of each subgroup is small.

One notable finding from our simulation studies, particularly
in the subgroup setting, was the enhanced performance of the
BMTM-A approach over the BMTM-P approach in terms of point
and interval estimation. This difference arises primarily from the
challenges associated with accurately estimating the non-bunching
distribution when applying these methods to subgroups with lim-
ited sample sizes. The BMTM-A approach mitigates challenges in
small subgroups through its sequential estimation strategy. Identi-
fying and excluding the bunching distribution isolates cleaner data
for a more stable and accurate characterization of the non-bunching
component, ultimately improving parameter and interval estimates.

While Table 1 summarizes the overall performance metrics, Fig-
ure 3 provides a visual comparison of the subgroup-specific causal
effects estimated 𝜏𝑔 . This figure explicitly contrasts the point es-
timates and the credible intervals 95% obtained from BMTM-P
and HBTM-P for each subgroup, providing deeper insight into
their performance at the subgroup level. As illustrated in Figure 3,
HBMTM-P consistently yields more accurate point estimates of 𝜏𝑔
and narrower 95% credible intervals across the various subgroups
compared to BMTM-P. These visual comparisons further emphasize
the effectiveness of our proposed HBTM-P method in estimating
the threshold’s causal effect on customers, even in the presence of
small sample sizes within subgroups.

6 Conclusion
This study addresses the critical challenge of accurately estimating
the causal effects of thresholds in marketing, particularly when cus-
tomers strategically manipulate their behavior to qualify for incen-
tives. It is a common scenario that violates the assumptions of stan-
dard methods such as RDD. We propose a novel framework called
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Figure 3: Point estimates and 95% credible intervals of 𝜏𝑔 by
BMTM-P and HBMTM-P.

Bayesian Modeling of Threshold Manipulation via Mixtures (BMTM),
which models the observed spending distribution as a mixture of
two latent distributions: one representing customers unaffected by
the threshold and another representing those strategically affected,
exhibiting a distortion near the threshold value. Furthermore, we
extend BMTM to Hierarchical BMTM (HBMTM) to robustly esti-
mate heterogeneous causal effects between customer subgroups,
even with limited sample sizes.

Our simulation studies demonstrate the effectiveness of our pro-
posed methods, showing that they outperform standard RDD meth-
ods in estimating causal effects. HBMTM effectively estimates the
causal effect because the hierarchical Bayesian approach allows
borrowing strength across subgroups, leading to more stable esti-
mates.

The findings of this study offer significant implications both for
theory and practice in applying causal inference methods in mar-
keting. Theoretically, our framework contributes to the growing
literature on causal inference in the presence of strategic customer
behavior, providing a flexible and robust approach to disentan-
gle manipulation effects from true causal impacts. Marketers can
use BMTM and HBMTM to gain more precise insight into how
threshold-based incentives influence various customer segments.
This understanding can inform the design of more effective and
profitable marketing strategies, optimizing threshold placements,
and personalizing offers to maximize customer response and return
on investment.

Although our study provides a solid foundation for estimating
causal effects under threshold manipulation, there are several av-
enues for future research. The current framework assumes specific
parametric forms for the mixture components, and future work
could explore more flexible, semi-parametric, or non-parametric
approaches to capturing complex spending behaviors. Furthermore,
investigating the performance of our methods with diverse real-
world datasets, potentially incorporating dynamic aspects of cus-
tomer behavior over time, would further validate and extend their
applicability.
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