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Use case: Threshold-based marketing strategies

Many marketing applications use threshold to offer rewards

Credit Card Incentive Programs: Loyalty Programs:
Offering bonus points when a customer's Upgrading a customer's status for
monthly spending exceeds a threshold surpassing an annual spending target
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Motivation of estimating causal effects of thresholds

Estimating causal effects of thresholds is important for effective marketing

I want to get the
average order value
from $35 to $55---

Customer

Designing the
spending threshold Motivation:
u What is the Impact of
Spending Thresholds?

Marketing Manager
Threshold



Limitations of Regression Discontinuity Design (RDD)

The assumption of RDD can be violated
when customers strategically manipulate their behavior
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When thresholds encourage strategic
behavior, it creates self-selection bias as
customers can choose to cross the threshold.
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Basic setup

» Use the potential outcome framework:
Y (1) (with threshold), Y (0) (without threshold)

« Assume that all customers can be classified into two types:
» Bunching customers: customers who strategically adjust their spending
near the threshold to ensure they exceed it.
* Non-bunching customers: customers whose spending behavior lies
outside the neighborhood of the threshold and is therefore unaffected by it.

» The average treatment effect of the threshold on customers is defined as
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Mixture model for bunching and non-bunching distributions 6

Yi ~nf(Y;ly)+ (A —m)g(Y;|0)

Observed bunching non-bunching
data customers customers
] Observed distribution Bunching distribution f:
_ - High density localized around the
Mixture model Near the threshold threshold
-- Bunching distribution Y = Y(l)

-- Non-bunching distribution
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Causal effect estimation: a Bayesian approach

« We propose a Bayesian approach to fit our mixture model to the data
(Bayesian Modeling of Threshold Manipulation via Mixtures (BMTM))

 This Bayesian approach provides three advantages:
« Incorporate prior knowledge (e.g., bunching distribution is concentrated around K)

 Quantify uncertainty of causal effects
- Easily extendable to hierarchical models to estimate heterogeneous treatment

effect (HTE)

« Hierarchical Extension (HBMTM) for HTE provides stable estimate of each subgroup
by “borrowing strength” from other groups
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Experimental results

Simulation results
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Overall summary

Problem: Estimating the causal effect of marketing thresholds is crucial, but existing
methods like RDD are unreliable when customers strategically manipulate their
spending

Core idea: We propose a new approach that models the observed spending
distribution as a mixture of two populations: customers who are strategically affected
by the threshold, and those who not (Bayesian Modeling of Threshold Manipulation via
Mixtures (BMTM))

Extension: We further extend BMTM into a hierarchical model (HBMTM) to estimate
heterogeneous treatment effects across various customer subgroups.

Result: Our simulation experiments demonstrated that our proposed methods
estimate the causal effect with far greater accuracy than conventional RDD



More about the paper
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 Contact: kousuke.kubota.xt@nttdocomo.com

« arXiv: coming soon! (an extended version)

Thank you!


mailto:kousuke.kubota.xt@nttdocomo.com
mailto:kousuke.kubota.xt@nttdocomo.com

