Causal Inference under Threshold Manipulation: A Bayesian Mixture Approach

Kohsuke Kubota¹ and Shonosuke Sugasawa²

1 NTT DOCOMO, INC 2 Keio University

E-mail: kousuke.kubota.xt@nttdocomo.com

Use case: Threshold-based marketing strategies

Many marketing applications use threshold to offer rewards

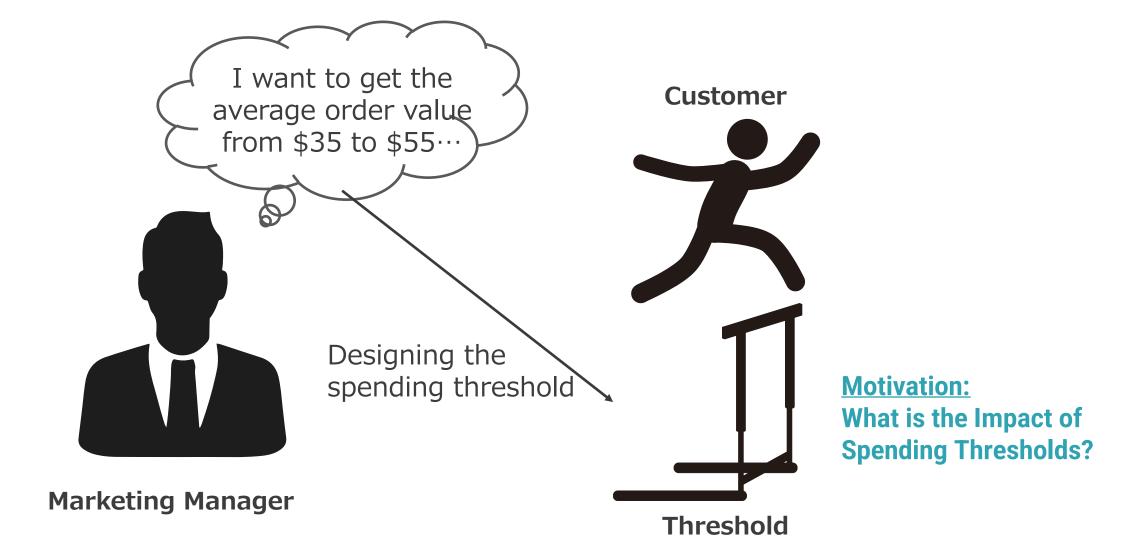
Credit Card Incentive Programs:

Offering bonus points when a customer's monthly spending exceeds a threshold

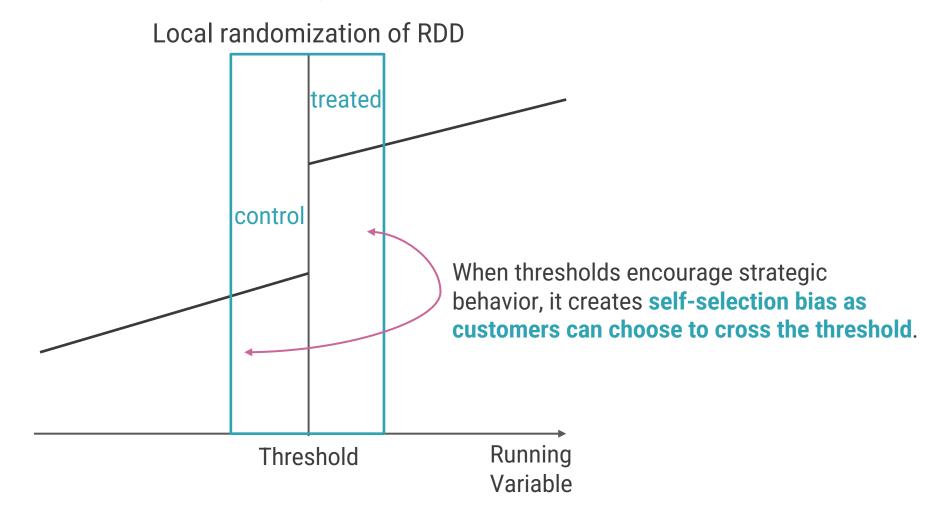
Loyalty Programs:

Upgrading a customer's status for surpassing an annual spending target

Estimating causal effects of thresholds is important for effective marketing



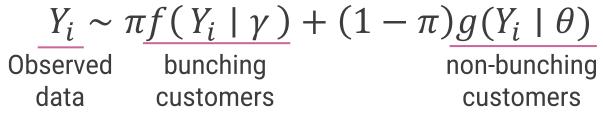
The assumption of RDD can be violated when customers strategically manipulate their behavior

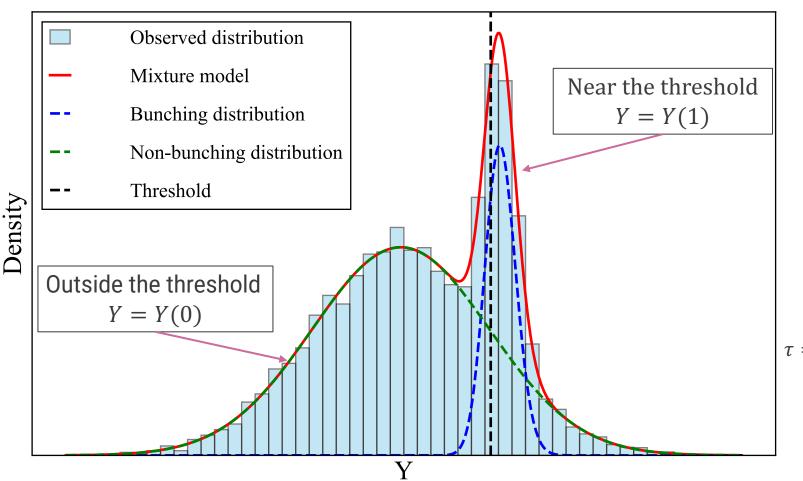


- Use the potential outcome framework: Y(1) (with threshold), Y(0) (without threshold)
- Assume that all customers can be classified into two types:
 - Bunching customers: customers who strategically adjust their spending near the threshold to ensure they exceed it.
 - Non-bunching customers: customers whose spending behavior lies outside the neighborhood of the threshold and is therefore unaffected by it.
- · The average treatment effect of the threshold on customers is defined as

$$\tau \coloneqq \mathbb{E}[Y(1) - Y(0) \mid \underline{Y^I} \le Y(t) \le \overline{Y}^I, t \in \{0, 1\}]$$

Near the threshold





Bunching distribution *f*:

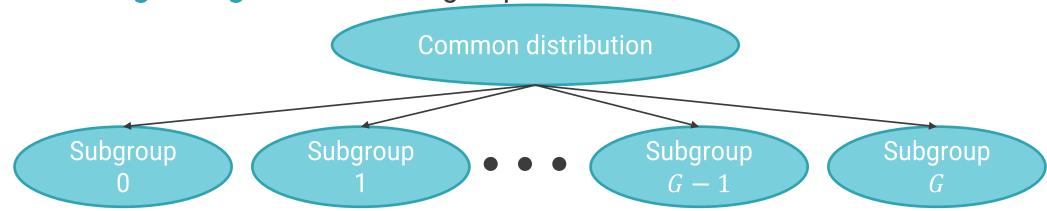
High density localized around the threshold

Non-bunching distribution *g*:

Widespread density across the entire data range

$$\tau = \frac{\int_{\underline{Y}^I \leq Y(t) \leq \overline{Y}^I} y f(y \mid \gamma) dy}{\int_{\underline{Y}^I \leq Y(t) \leq \overline{Y}^I} f(y \mid \gamma) dy} - \frac{\int_{\underline{Y}^I \leq Y(t) \leq \overline{Y}^I} y g(y \mid \theta) dy}{\int_{\underline{Y}^I \leq Y(t) \leq \overline{Y}^I} g(y \mid \theta) dy}$$

- We propose a Bayesian approach to fit our mixture model to the data (Bayesian Modeling of Threshold Manipulation via Mixtures (BMTM))
- This Bayesian approach provides three advantages:
 - Incorporate prior knowledge (e.g., bunching distribution is concentrated around K)
 - Quantify uncertainty of causal effects
 - Easily extendable to hierarchical models to estimate heterogeneous treatment effect (HTE)
- Hierarchical Extension (HBMTM) for HTE provides stable estimate of each subgroup by "borrowing strength" from other groups



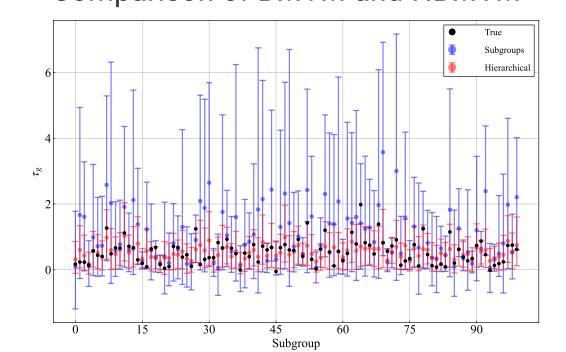
Experimental results

Simulation results 60 50 20 10 20 40 60 80 100

Simulation results

Method	MSE	IS
RDD	6.77	
BMTM	0.68	3.42
HBMTM	0.19	1.18

MSE: Evaluates the accuracy of point estimates
IS: Evaluates the quality of interval estimates
Comparison of BMTM and HBMTM



- Problem: Estimating the causal effect of marketing thresholds is crucial, but existing methods like RDD are unreliable when customers strategically manipulate their spending
- Core idea: We propose a new approach that models the observed spending distribution as a mixture of two populations: customers who are strategically affected by the threshold, and those who not (Bayesian Modeling of Threshold Manipulation via Mixtures (BMTM))
- Extension: We further extend BMTM into a hierarchical model (HBMTM) to estimate heterogeneous treatment effects across various customer subgroups.
- Result: Our simulation experiments demonstrated that our proposed methods estimate the causal effect with far greater accuracy than conventional RDD

• Contact: kousuke.kubota.xt@nttdocomo.com

• arXiv: coming soon! (an extended version)

Thank you!