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Abstract

The simultaneous application of multiple treatments is increasingly
common in many fields, such as healthcare and marketing. In such
scenarios, it is important to estimate not only the effect of each
single treatment effect, but also the synergistic treatment effects
that arise from combinations of treatments. Previous studies have
proposed methods that combine a variational autoencoder with
a task embedding network, which captures treatment similarities
for multi-treatment causal inference. These methods assume the
presence of unobserved covariates and regard observed data as
proxies for those unobserved covariates. As a result, they may still
learn unnecessary latent variables even when the covariates are
observed. This model misspecification can lead to misleading esti-
mates of causal effects. To address this issue, we propose a novel
deep learning framework that simultaneously captures both sin-
gle and synergistic treatment effects and mitigates selection bias,
using a task embedding network and a representation learning
network with the balancing penalty. The task embedding network
ensures that similar treatments yield similar representations and
outcomes, improving the estimation of both single and synergistic
effects. The representation learning network with the balancing
penalty directly learns representations from observed covariates
and controls distributional differences across treatment patterns
using Integral Probability Metrics, thereby reducing the risk of
model misspecification due to erroneous latent structures. We eval-
uate our method using multiple simulation datasets and compare
its performance with existing baselines. Our method consistently
outperforms baselines by reducing estimation errors in both single
and synergistic treatment effects across settings.
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1 Introduction

In many fields, such as healthcare and marketing, it is increasingly
common for multiple treatments to be applied simultaneously, and
estimating both single and synergistic treatment effects is criti-
cally important. For example, healthcare strategies often involve
the concurrent administration of multiple drugs, potentially result-
ing in complex interactions and changes in side effects [7, 18, 30].
Similarly, in marketing, companies frequently implement several
promotional campaigns simultaneously, where the overall impact
cannot be captured by simply summing the effects of each cam-
paign [4, 12, 13, 20]. Misestimating such multiple treatment effects
can have a significant impact on decision-making in both domains,
highlighting the need for methods that can accurately identify both
single and synergistic treatment effects.

Most existing causal inference methods are designed for single
treatment settings, and naive extensions to multiple treatments
cannot accurately estimate single and synergistic treatment ef-
fects [14, 29]. For example, methods that assume each treatment
is applied in isolation and do not account for situations where
a unit receives multiple treatments simultaneously [8, 19] fail to
incorporate the possibility of synergistic effects and, therefore, can-
not distinguish between single and synergistic treatment effects.
MEMENTO [19] is a deep learning-based method, but its model
architecture does not account for the simultaneous application or
interaction of treatments. As a result, the estimable causal effects
are limited to single treatment effects.

Existing methods for estimating single and synergistic treatment
effects still pose structural limitations that may lead to reduced
performance in estimating causal effects [1, 22]. Specifically, lin-
ear regression with interaction terms can theoretically capture
synergistic effects [6], although this approach is highly sensitive
to model misspecification and lacks the flexibility to model com-
plex, non-linear interactions between treatments. To overcome this
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limitation, deep neural network-based methods such as Neural
Counterfactual Relation Estimation (NCoRE) [21] and Task Embed-
ding-based Causal Effect Variational Autoencoder (TECE-VAE) [24]
have been proposed. NCoRE addresses treatment interactions using
separate outcome prediction networks and interaction subnetworks
activated only when multiple treatments are simultaneously ap-
plied. However, it lacks a structure that supports parameter sharing
across similar treatments or combinations, leading to unstable es-
timates, especially when data is limited. TECE-VAE combines a
treatment similarity-aware task embedding network with a VAE.
This approach assumes the presence of latent covariates and treats
observed covariates as proxies for these latent variables. Even when
true covariates are observed, the model still infers latent covariates,
increasing the risk of misspecification and degrades estimation
performance.

In this study, we propose a novel deep learning framework com-
prising a task embedding network that captures treatment similarity
and a representation learning network with the balancing penalty
that mitigates model misspecification and selection bias. The task
embedding network learns to assign similar embedding vectors
to similar treatments, enabling information sharing across treat-
ment patterns based on their similarity. The representation learning
network with the balancing penalty learns representations non-
parametrically from the observed covariates while adjusting the
representation distributions to be aligned across different treatment
patterns, thereby suppressing selection bias. Unlike TECE-VAE, this
data-driven flexibility removes the coercion to infer latent covari-
ates, thereby reducing the risk of accuracy degradation caused by
model misspecification.

We evaluate our method using three simulation datasets and
show that our proposed method consistently outperforms base-
line methods in estimating both single and synergistic treatment
effects, achieving the lowest estimation errors across all settings.
These results demonstrate the robustness and generalizability of
our method in diverse data-generating processes.

2 Related Work

Existing deep learning approaches to causal inference can broadly
be categorized into two groups. The first group consists of represen-
tation learning-based approaches, which learn feature representa-
tions directly from observed covariates and predict counterfactual
outcomes. The second group comprises deep generative model-
based approaches, which assume the existence of latent covariates
and model the entire data-generating process using deep generative
models.

In the first group, MEMENTO [19] and NCoRE [21] extend
models designed for single-treatment settings, such as Treatment-
Agnostic Representation Network (TARNet) and Counterfactual
Regression (CFR) [25], to the multi-treatment setting by assigning
outcome prediction networks to each treatment. TARNet learns a
shared representation that is independent of treatment and uses
it to predict counterfactual outcomes. CFR extends TARNet by
introducing a balancing penalty based on Integral Probability Met-
rics (IPM) [27], which aligns the representation distributions of the
treated and control groups to mitigate selection bias. MEMENTO,
based on CFR, employs a separate outcome prediction network
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for each treatment. NCoRE supports the estimation of both single
and synergistic treatment effects by introducing interaction subnet-
works that are activated only when multiple treatments are applied
simultaneously. Similarly to MEMENTO, this model assigns an in-
dependent outcome prediction network to each treatment. Within
each treatment arm, interaction subnetworks are incorporated to
capture the interactions between the corresponding treatment and
other treatments.

However, although these methods have been extended to esti-
mate causal effects in multi-treatment settings, they face challenges
when estimating synergistic treatment effects in scenarios where
units receive multiple treatments simultaneously. Since MEMENTO
does not assume that multiple treatments can be applied simultane-
ously, it lacks the architectural components necessary to capture
interactions among treatments and thus cannot estimate synergis-
tic treatment effects. While NCoRE introduces structures to model
such effects, its outcome prediction networks and interaction sub-
networks are trained only with samples corresponding to a specific
treatment pattern, and there is no parameter sharing across net-
works. This lack of shared parameters prevents information sharing
across similar treatments and often leads to unstable estimation,
especially for infrequent treatment patterns.

In the second group of deep generative approaches, TECE-VAE
[24] introduces a task embedding network to the models designed
for single-treatment settings, Causal Effect VAE [15], allowing the
estimation of causal effects with multiple treatments. These meth-
ods aim to address selection bias in situations where observed co-
variates are proxies for unobserved latent covariates. These methods
address settings where standard covariate adjustment methods [2],
including propensity score matching [28], are inadequate due to
the presence of unobserved covariates. Both models assume the
existence of latent covariates and that all observed data are proxies
for these variables. The VAE decoder is used to generate latent
covariates, while the encoder performs an approximate inference
of the outcome distribution conditioned on latent covariates. In
TECE-VAE, a task embedding network is incorporated into this
structure to enable the modeling of synergistic effects.

However, since these approaches inherently assume the pres-
ence of latent covariates, this assumption can lead to their models
being misspecified if such covariates do not exist. Even when la-
tent covariates are absent or observed data sufficiently explain the
covariates, these models still attempt to estimate unnecessary la-
tent covariates. When the observed data structure does not align
with the assumptions of the model, this mismatch can lead to poor
estimation performance [22].

Our proposed model addresses the primary limitations of both
groups by incorporating a task embedding network, which captures
treatment similarity, along with a representation learning network
equipped with a balancing penalty that mitigates accuracy loss
due to model misspecification. From the representation learning
perspective, the similarity of the treatment is captured through
the task embedding network and exploited via a single outcome
prediction network, allowing parameter sharing across treatment
patterns. This design improves estimation stability even in data-
sparse regimes. From the generative-modeling perspective, the
model forgoes explicit latent-covariate assumptions and instead
learns balanced representations directly from observed proxies,
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while the penalty attenuates selection bias. This design mitigates
the risk of misspecification-induced accuracy degradation, thereby
supporting robust causal inference across various covariate settings.

3 Preliminaries

We formulate the causal inference problem under multiple treat-
ments within the potential outcome framework [23]. The goal is
to estimate the single and synergistic treatment effects of multi-
ple binary treatments on a continuous outcome using observed
covariates.

We consider N independent units, where i = 1,..., N. For each
unit i, we observe a covariate vector x; € R4 drawn from the
covariate space X. We assume that the total number of treatments
is K and the set of all possible treatment patterns is T € {0, 1}¥.
For a particular treatment vector ¢ € T, the potential outcome for
unit i is denoted by Y;(¢) € R.

To identify causal effects under the potential outcome frame-
work, we adopt the following three assumptions commonly used in
observational studies [9]. These assumptions ensure that potential
outcomes are identifiable from the observed data.

Assumption 1. (Ignorability.) For any treatment pattern, the
potential outcome is independent of the assigned treatment T given
the observed covariates X.

Assumption 2. (Overlap.) Every unit has a non-zero probability
of receiving any treatment pattern given their observed covariates.

Assumption 3. (Stable Unit Treatment Value Assumption)
(1) no interference, meaning that the outcome of one unit is unaffected
by the treatment assignments of other units; and (2) consistency of
treatment, meaning that the potential outcomes correspond to well-
defined and unique treatments.

We define the single average treatment effect (S-ATE) and the
synergistic average treatment effect (Sy-ATE) to quantify the indi-
vidual and combined impacts of multiple treatments. These defini-
tions are mathematically equivalent to the notions of main effects
and interaction effects in a 2K factorial design, respectively [5, 6].
In particular, our definition of the Sy-ATE structurally corresponds
to interaction effects in a factorial design, as both are formulated as
weighted linear combinations of potential outcomes across treat-
ment patterns. Given covariates x and a treatment vector ¢, we
denote the conditional expected outcome by

plx,t) =E[Y(#) | X = x]. 1

Let t,; denote the one-hot treatment vector whose kth entry equals
one, and all other entries equal zero. The S-ATE for treatment k,
denoted by 7g-aTE (), is defined as

75-ATE (k) = Ex [p(x, t11) — p(x,0)]. (2

For any subset S € {S’ C {1,...,K} | |S’| > 2}, the Sy-ATE for
the treatment combination S, denoted by 7sy-aTE(S), is defined as

roy-ATE(S) =Ex | 31 (=D (e ). @)
Qocs

where #(,0) is the treatment vector that sets the components in-
dexed by Q to one and all remaining components to zero. For ex-
ample, K =2and$ ={1,2}, 7sy-aTE({1,2}) = Ex[p(x, (1, 1)) -
p(x, (1,0)) = u(x, (0,1)) + p(x, (0,0))].
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Figure 1: The architecture of the proposed model consists of
three components: the representation learning network (yel-
low), the task embedding network (green), and the outcome
prediction network (blue). The latent representation ®(x) is
concatenated with the task embedding vector t,,(t) to predict
the outcome y. The model is trained with two loss terms: the
prediction loss L, and the balancing penalty Lg (red).

4 Proposed Method
4.1 Model Architecture

The objective of our model is to learn p(x,t) and compute the
causal effects defined in Equations (2) and (3) for any treatment
vector t. The architecture of the proposed model for estimating
fi(x,t) is illustrated in Figure 1. The model consists of three main
components: (1) a representation learning network with the bal-
ancing penalty, (2) a task embedding network, and (3) an outcome
prediction network. These components are jointly optimized end-
to-end. Based on balanced covariate representations and treatment
embeddings, the model aims to accurately estimate counterfactual
outcomes under multiple treatments.

First, the representation learning network with the balancing
penalty maps the observed covariates x € R to a latent represen-
tation space suitable for estimating causal effects. This network is
designed to reduce the influence of selection bias by removing noise
and redundant information from the covariates and by encouraging
alignment of the representation distributions in different treatment
patterns. Specifically, it learns a function ® : R — R, where p
is a hyperparameter indicating the dimensionality of the learned
representations. An IPM-based balancing penalty [25] is applied
to the learned representations to minimize the distance between
the distributions associated with different treatment patterns, thus
mitigating the selection bias arising from treatment assignment.

Next, the task embedding network captures similarities among
treatment patterns by mapping the binary treatment vector ¢ into a
g-dimensional continuous task embedding vector via a multi-layer
perceptron MLP,,. The output is denoted by t,,(¢) = MLP,,(#) €
RY. This design ensures that treatment patterns with similar con-
tent and effects are placed close to each other in the embedding
space. Consequently, the model learns to associate similar patterns
with similar representations, which allows the outcome prediction
network to generalize the learned parameters across similar treat-
ment patterns. As a result, even for treatment combinations with
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limited data, the model can leverage shared information from re-
lated tasks, leading to more efficient and stable estimation of single
and synergistic treatment effects.

Finally, the outcome prediction network takes the concatenated
vector of ®(x) and t,,(¢) as input, forming a (p + g)-dimensional
representation, and outputs the predicted outcome Y using a neural
network h : RP*9 — R. Unlike previous approaches that use sepa-
rate networks for each treatment[19, 21], our architecture employs
a single shared prediction function h for all treatment patterns.
This design enables the sharing of structural parameters, which
facilitates consistent learning across diverse treatment patterns.

Our model predicts counterfactual outcomes by directly in-
putting the treatment vector of interest and estimates causal effects
based on the predicted outcomes. Through training, the proposed
model learns a function fi(x,¢) composed of a representation net-
work ®, a task embedding network t,,, and an outcome prediction
network h. Instead of using the actual observed treatment vector
t, a counterfactual treatment vector ¢’ is fed into fi(x, ), and the
causal effect is estimated by computing the difference in predicted
outcomes according to Equation (2) and (3).

4.2 Objective function

The objective function of our proposed method is designed to simul-
taneously address two key challenges in causal effect estimation:
maximizing outcome prediction accuracy and correcting distribu-
tional imbalances caused by selection bias. Optimizing only for the
former can result in biased counterfactual predictions while focus-
ing solely on the latter can compromise the expressive capacity of
the model. To address this trade-off and overfitting, we design the
loss function L as the sum of three components:

L=Ly+ale(®t)+pllwll. 4)
where the first term Ly represents the outcome prediction error,
the second term Lg (-, -) is a balancing penalty that reduces distri-
butional differences in the representation space across treatment
patterns, and the third term is an L2 regularization term applied to
the network weights. The coefficients « and f are hyperparameters
that control the strength of the corresponding components.

Minimizing the outcome prediction error Ly is essential for an
accurate estimation of causal effects. However, when the frequency
of observed treatment patterns is imbalanced, certain treatment pat-
terns may be underrepresented, resulting in biased predictions. To
mitigate this issue, we introduce a correction based on the empirical
frequency of each treatment pattern:

-1

1[1 N
wilt) = | Lt =t1] )
Jj=1
1 N
Ly = D, wilt)(yi = 3)°, ©)
i=1

where 7J; denotes the predicted outcome for unit i, and w;(¢;) is the
inverse of the relative frequency of the treatment ¢; in the training
data.

The second term Lg is designed to suppress selection bias by
aligning the representation distributions in all treatment patterns.
It is defined by computing the IPM between the representation
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distributions of each pair of distinct treatment patterns and av-
eraging these distances. The use of IPM allows us to effectively
capture non-linear discrepancies between probability distributions,
and thus contributing to better generalization in causal effect esti-
mation [25, 26]:

1
Ly = —

T IPM ({2011 ¢,=a)s 10(x) ;¢ 2y} ) ()
( 2 ) {a,b}€T a+b
where ®(x) is the representation network mapping the input co-
variates x into a latent representation space, and IPM(-, -) measures
the discrepancy between two distributions. Here, |T| denotes the
number of distinct treatment patterns and (lgl) is the total number
of pairs of treatment patterns.

5 Experiments

To evaluate the effectiveness of the proposed method, we con-
ducted comparative experiments using simulated datasets. The
experiments focused on the performance of estimating single and
synergistic treatment effects, and the results were compared with
those of several existing methods. This section describes the exper-
imental setup, the hyperparameters for the proposed and baseline
models, and the evaluation metrics used in the analysis.

5.1 Simulation datasets

To evaluate the performance of the estimation of single and syn-
ergistic treatment effects, we generated simulation datasets under
three distinct causal structures. The first scenario assumes that all
covariates are directly observable. This scenario allows us to evalu-
ate the estimation performance of the model in an ideal scenario
where no unobserved (latent) covariates exist. The second scenario
assumes that all covariates influencing treatment and outcome are
latent and unobserved, reflecting the assumptions made by deep
generative models [15, 24]. Specifically, it considers real-world sit-
uations in which true covariates, such as the economic status or
lifestyle of units that affect both treatment assignment and out-
comes, cannot be measured directly and only proxy variables such
as residential area, occupation, or purchase history are observed.
This allows a direct comparison with models designed to address
latent covariates. The third scenario represents a more realistic
hybrid setting where both observed and latent covariates coexist,
effectively combining the structures of scenario 1 and scenario 2.
This allows us to test the generalizability of our method in complex
settings.

In all scenarios, the number of treatments K was set at three and
the sample size N was set at 50,000. To ensure a fair comparison
with baseline methods and mitigate bias caused by variability in
data generation, we generated 100 datasets for each scenario using
different random seeds and reported the average results.

Given the true covariates x; trye, treatment assignment and out-
come generation follow the same functional form in all scenarios.
In the outcome generation function f, treatment patterns that share
the same activated components tend to produce similar outcomes
since their corresponding interaction terms contribute similarly to
the overall effect. This introduces an inherent structural similarity
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across treatments.
tk ~ Bern (0 (w;';cxi!tme) - 5), k=123,

1 2
f(xitrue, ti) = W;(rxi,true + (xi(,tr)ue + Dt + l‘z(xi(,tr)ue +Dtiz

3 4 5
+0‘8(xi<,tr)ue + Dtz + (xi<,tr)ue +0.5)t1ti2 — O'S(Xi(,tr)ue + Dti1ti3+
(6) 7

0.1(x; + l)tiggtiﬁ + 0.7x( )

i,true i,true
2
Yi~N (f(xi,tru5> ti), 1 ),

where o(x) = 1/(1 + exp(—x)), and § is a set of bias parameters
depending on the simulation setting. Vectors w;, and wy are weight
vectors whose elements are independently drawn from the uni-
form distribution U (-1, 1), and used for treatment assignment and
outcome generation, respectively.

In all scenarios, only the observed covariates x; ops are available
to the model during training and evaluation. The true covariates
Xitrue are solely used to generate treatments and outcomes and
are not accessible at inference time. We vary the structure of the
observed covariates x; 51,5 and the true covariates x; trye as follows:

titi2tiz + 2,

Simulation dataset 1 (observed covariates only).

() () () () ()
x{l ~ N(c;’, 1), xi’{l ~ U(-10, 10), xi’] ~Bern(pr ),

i, b
Xjobs = Xitrue = (xi,n, Xius xi,b),
where j € {1,...,10} and c,(lj ) are drawn from the uniform distri-

)

bution U(-1, 1). Similarly, each Py

simulation dataset 1, § = 0.3.

is sampled from U(0,1). In

Simulation dataset 2 (proxy variables only).
j )T
zi ~ N(0, I1p), x,-(jl) ~ NwyTz;,12),
j T j )T
xl.(’{l) ~ N(wff) zi,5%), xl.(j)) ~ Bern(a(w,ﬂj) zi)),
Xiobs = (Xin: Xiu>Xip)s  Xitrue = Zi»
where j € {1,...,10} and the vectors w , and w[gj) are
weight vectors whose elements are drawn independently from

U(-1,1). I; denotes the identity matrix d X d, which is also used
as the variance-covariance matrix. In simulation dataset 2, § = 0.2.

) 0

Simulation dataset 3 (observed covariates and latent covariates).
1 1
zi ~ N(0,I5), x,~(,p) ~ N(W;;)Tzi, 12),
x D N 12, «U) ~U(-1010), <)~

Xitrue = (xi,n,xi,wxi,bxzi),

——

Xiobs = (Xins Xius Xips Xip),

where ] € {1,...,15} and j € {1,...,5}. Vectors WI(JI) are weight
vectors whose elements are drawn independently from U(-1,1).
In simulation dataset 3, § = 0.1.

5.2 Implementation Details

Our proposed method consists of three neural networks, all of
which are built using fully connected (FC) layers with 200 units
per hidden layer and leaky ReLU activation [16]. ® and t,, each
consist of two hidden layers, while h has three. The task embed-
ding network outputs a five-dimensional embedding vector. The
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balancing penalty coefficient & was set to one, and the IPM used in
the penalty was the Wasserstein distance [27].

To enable a comprehensive comparison between methods that
extend single treatment models to multiple treatment settings and
those specifically designed for multiple treatments, we selected
four baseline methods: TARNet [25], CFR with Wasserstein-based
balancing (CFR-WASS)[25], TECE-VAE[24], and NCoRE [21]. To
adapt TARNet and CFR-WASS to the multi-treatment setting, we
constructed a separate inference network for each of the 2K treat-
ment patterns. In CFR-WASS, the penalty coeflicient o was also
fixed at one. In TECE-VAE, the latent dimension was set to 25, and
the task embedding network had two hidden layers with 200 units
and ELU activation [3], producing a five-dimensional embedding.

All models were trained with Adam optimizer [11], using a learn-
ing rate of 1072, a batch size of 128, and an L2 regularization of
1075, Training was carried out for 30 epochs. Each dataset was
divided into training sets 70% and test sets 30%, and all evaluations
were carried out on the test set.

5.3 Evaluation Metrics

We evaluate the estimation performance of single and synergistic
treatment effects using two metrics: the S-ATE error for individ-
ual treatment effects and the Sy-ATE error for interaction effects.
These are defined analogously to the absolute ATE estimation er-
ror commonly used in single-treatment studies [10], computed as
the absolute difference between the true and estimated S-ATE or
Sy-ATE.

S-ATE Error(k) = |rs.aT (k) — fsate(K), ke {L...K}, (8)
Sy-ATE-Error(S) = |rsy-aTE (S) — Zsy-aTE(S)], )

where S denotes a subset of treatments with |S| > 2. 7g_aTg(+) and
Zsy-ATE (") denote the estimated S-ATE and Sy-ATE.

6 Results

Table 1 presents the estimation errors of the proposed and baseline
methods in three types of simulation datasets. In all datasets, the
proposed method achieves the lowest estimation errors, demonstrat-
ing its superior ability to accurately estimate single and synergistic
treatment effects compared to existing methods.

While some baseline methods perform competitively on S-ATE
or Sy-ATE estimation, none maintain strong performance on both.
In simulation dataset 1, NCoRE demonstrates strong performance
in the estimation of S-ATE, while TECE-VAE performs well in the
estimation of Sy-ATE. However, NCoRE exhibits large Sy-ATE er-
rors, indicating limitations in capturing synergistic effects without
parameter sharing. TECE-VAE, on the other hand, exhibits large
S-ATE errors, indicating degraded estimation performance due to
model misspecification. TARNet and CFR-WASS consistently un-
derperform in Sy-ATE, suggesting that naive extensions of models
designed for single-treatment settings are inadequate for multi-
treatment scenarios. In simulation datasets 2 and 3, which are specif-
ically designed to reflect the assumptions of TECE-VAE, TECE-VAE
shows relatively low Sy-ATE errors for certain treatment combina-
tions, while its performance degrades in S-ATE estimation. These
results highlight the robustness of the proposed method in diverse
data-generating processes.
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Table 1: Comparison of mean estimation errors and standard deviation for S-ATE and Sy-ATE across multiple simulation datasets.
Here, k € {1,2,3} indexes individual treatments for S-ATE, and S C {1, 2,3} (with |S| > 2) denotes treatment combinations for

Sy-ATE.
Sim. No. Method S-ATE Error ‘ Sy-ATE Error
k=1 k=2 k=3 | S={12} S =1{2,3} S$=1{1,3} $=1{1,2,3}
TARNet 0.11 £.086  0.12 +£.086 0.11 £ .086 0.17 £ .13 0.17 £ .13 0.17 £ .12 0.25 +£.19
CFR-WASS  0.14 £ .11 0.13 + .11 0.12 + .11 0.21 + .14 0.19 + .15 0.19 = .15 0.27 £ .19
1 NCoRE 0.10 +£.072  0.12 +.089 0.11 = .077 0.13 = .12 0.16 + .11 0.14 = .10 0.19 + .14
TECE-VAE  0.23 +.19 0.26 £.23 0.20 £ .17 0.10 +£.086  0.11 +£.083 0.091 +.074 0.11 +.085
Proposed 0.10 +.071 0.11+.094 0.095 +.078 | 0.10 £.074 0.092 +.071 0.082 +.060 0.094 + .095
TARNet 0.17 £ .15 0.19 £ .16 0.16 + .15 0.19 £ .12 0.18 £.12 0.17 £ .12 0.29 +.22
CFR-WASS  0.17 + .14 0.19 + .17 0.17 = .16 0.19 + .15 0.18 + .14 0.21 = .14 0.33 + .26
2 NCoRE 0.19 = .17 0.21 .19 0.19 + .18 0.23 = .17 0.22 + .16 0.20 = .17 0.28 + .22
TECE-VAE 0.19 £ .15 0.22 £ .16 0.20 £ .16 032 +.21 0.16 + .14 0.17 + .14 0.22 + .17
Proposed 0.17 + .16 0.18 + .16 0.16 + .14 0.18 + .15 0.14 + .11 0.16 + .11 0.22 + .16
TARNet 0.40 = .29 0.38 = .25 0.35 = .26 0.28 = .19 0.24 = .19 0.28 = .22 0.63 + .41
CFR-WASS  0.37 + .26 0.36 + .26 0.33 + .24 0.29 + .24 0.31 + .23 0.29 + .24 0.80 + .56
3 NCoRE 0.43 + .34 0.34 + .30 0.31 + .23 0.31 + .21 0.31 + .24 0.31 + .21 0.77 £ .55
TECE-VAE 0.33 + .21 0.40 = .20 0.27 = .16 0.27 = .22 0.25 + .21 0.22 = .18 0.69 + .54
Proposed 0.20 + .16 0.23 +.17 0.19 + .15 0.21 + .16 0.22 + .16 0.16 + .11 0.61 + .41
w0 " common treatment components are located near each other, visu-
©.0m ally confirming that similar treatments are mapped to similar task
301 0,0,0 (4,0,1) embedding vectors. These results imply that the task embedding net-
50 work effectively captures treatment similarity and that the learned
o .4 embeddings contribute to improved estimation performance.
S5 10 0
2
Eol
a3 0,1,0)
e 01 8 Conclusion
—20 . In this study, we proposed a novel deep learning framework for
(AR estimating single and synergistic treatment effects in scenarios in-
30 010 volving the simultaneous application of multiple treatments. Our
~60 -40 -20 Dimer?sion ] 20 40 60 approach combines a task embedding network that captures simi-

Figure 2: Visualization of task embedding vector using t-SNE

7 Discussion

Based on the simulation results, the proposed model outperformed
competing baseline methods in estimating single and synergistic
treatment effects under various simulation conditions. The pro-
posed model demonstrates its potential as a viable alternative to
existing representation learning-based models and deep generative
models.

The results shown in Table 1 suggest that the task embedding
network, introduced to capture similarities between treatments,
plays an important role in improving the performance of single
and synergistic effects estimation. Figure 2 visualizes the task em-
bedding vectors corresponding to different treatment patterns, pro-
jected into a two-dimensional space using t-distributed Stochastic
Neighbor Embedding (t-SNE) [17]. In the figure, patterns that share

larities among treatments with a representation learning network
with the balancing penalty that uses IPM to control distributional
differences between treatment patterns. This proposed framework
enables a stable estimation of causal effects.

Our simulation results demonstrate that the proposed model
consistently outperforms competitive baselines in estimating causal
effects under a wide range of experimental conditions. The proposed
method is expected to be a promising analytical tool for practical
applications such as evaluating the combined effects of drugs in
medicine and analyzing the combined effects of multiple measures
in marketing.

In future work, we plan to pursue three main directions. First, we
will explore systematic strategies to select the optimal weight & used
in the IPM-based balancing term. Second, we will apply our method
to real-world datasets in the medical and marketing domains to
verify its practical utility. Third, we aim to extend our framework
to a doubly robust estimation setting, such as DR-Learner, by incor-
porating both propensity score modeling and outcome regression
to enhance robustness against model misspecification.
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