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The Causal Inference Problem

U

Underlying AD
progression

Y

Outcome

X

Exposure

7

Classical solutions:
Randomized experiment

Measure all the confounders
Our solution:

Leverage the information in a multivariate outcome
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Cognitive test (e.g. MMSE)
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Causal Inference with Unmeasured Confounding
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Set-up: Causal Inference with Multiple Outcomes

1U1

Y (2)Y (1) Y (3)

1X 1

A multiple-outcomes set-up

If U were observed, then

E [Y (x)] = EUE [Y | X = x ,U]

However, if U were not fully observed, then E [Y (x)] is not
identifiable
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Overview of the parallel-outcomes framework

Non-parametric identification

Parametric Modeling
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Key Assumption: Parallel Outcomes

1U1

Y (2)Y (1) Y (3)

1X 1

The simplest parallel-outcomes model

Parallel-outcomes Model:

Y (1) ⊥⊥ Y (2) ⊥⊥ · · · ⊥⊥ Y (p) | (U,X ).
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Example: Alzheimer’s Disease

1U1

Underlying AD progression

Y (2)

Orientation ability

Y (1)

Calculation ability

Y (3)

Recall ability

1X 1

Biomarker level (e.g. tau protein level)

Condition 1: Cognitive functioning deteriorates as AD
progresses, regardless of the biomarker level
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Another example: Gene expression analysis

1U1

Batch effect

Y (2)

Gene expression 2

Y (1)

Gene expression 1

Y (3)

Gene expression 3

1X 1

Exposure

Often assumed in Surrogate Variable Analysis in genomics
(Leek and Storey, 2008; Gagnon-Bartsch et al., 2013; Sun et al., 2012; Wang et al.,

2017)

Y = Xβ + Uγ + ε

Independent noise
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Main Results

1. Causal effects are non-parametrically identifiable with
three parallel outcomes

2. Causal effects are identifiable with two parallel outcomes
under linear structural equation models (with additional
conditions)
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Comparison to Auxiliary Variables Approaches

Instrumental variable (IV) methods (Wright and Wright (1928);
Goldberger (1972); Hernán and Robins (2006); LW and Tchetgen Tchetgen
(2018))

Find an instrumental variable Z that acts like a
randomization

XZ

instrumental variable

Y

U
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Comparison to Auxiliary Variables Approaches

Instrumental variable (IV) methods (Wright and Wright (1928);
Goldberger (1972); Hernán and Robins (2006); LW and Tchetgen Tchetgen
(2018))
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randomization

Negative controls (Miao et al., 2018)

Find a negative control exposure Z and a negative control
outcome W

U

X YZ W

The parallel-outcomes framework requires no external data
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Overview of the parallel-outcomes framework

Non-parametric identification

Parametric Modeling
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Start from a binary model...

1U1

Y (2)Y (1) Y (3)

1X 1

The simplest parallel-outcomes model

For each x = 1,2,

pr(y (1), y (2), y (3) | x) =
∑

u

pr(y (1) | u, x)pr(y (2) | u, x)pr(y (3) | u, x)pr(u | x)

23 − 1 = 7 eqns 2 parameters 2 2 1

Promising, but these are non-linear equations...

11



Start from a binary model...

1U1

Y (2)Y (1) Y (3)

1X 1

The simplest parallel-outcomes model

For each x = 1,2,

pr(y (1), y (2), y (3) | x) =
∑

u

pr(y (1) | u, x)pr(y (2) | u, x)pr(y (3) | u, x)pr(u | x)

23 − 1 = 7 eqns 2 parameters 2 2 1

Promising, but these are non-linear equations...
11



Toward identifiability
For any y (1), y (2), y (3), x , we have

pr(y (1), y (2), y (3) | x) =
∑

u

pr(y (1) | u, x)pr(y (2) | u, x)pr(y (3) | u, x)pr(u | x)

pr(y (2), y (3) | x) =
∑

u

pr(y (1) | u, x)pr(y (2) | u, x)pr(y (3) | u, x)pr(u | x)

Idea: if only we could take the ratio between these two equations...
Fix y (1), and write summation in terms of matrix multiplication

P(y (1),Y (2),Y (3) | x) = P(Y (2) | U, x)PD(y (1) | U, x)PD(U | x)P(Y (3) | U, x)T ,

P(Y (2),Y (3) | x) = P(Y (2) | U, x)PD(y (1) | U, x)PD(U | x)P(Y (3) | U, x)T

where PD(·) are diagonal matrices.

“Take the ratio”:

P(y (1),Y (2),Y (3) | x)P(Y (2),Y (3) | x)−1

P(y (1),Y (2),Y (3) | x) = P(Y (2) | U, x)PD(y (1) | U, x)P(Y (2) | U, x)−1.
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The matrix adjustment method (Rothman et al., 2008; Hu, 2008)
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Identification

Theorem (Zhou, Tang, Kong and LW, 2024)

Under the parallel-outcomes model and some additional
regularity conditions, for all x, the potential outcome
distributions pr(y (j)(x)), j = 1,2,3 are identifiable in a discrete
parallel-outcome model in which all of Y (1),Y (2),Y (3),U have k
levels.
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Overview of the parallel-outcomes framework

Non-parametric identification

Parametric Modeling
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Linear structural equation modeling

1U1

Y (1) Y (2)

1X 1

Linear structural equation models:

X = αX U + γ>X V + εX ,

Y (1) = α1U + β1X + γ>1 V + ε1,

Y (2) = α2U + β2X + γ>2 V + ε2.

Here V represents measured covariates
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Theorem (Zhou, Tang, Kong & LW, 2024)
Assume a linear structural model and the following conditions:

Condition
X , Y (1), Y (2) have finite second moments.

Condition
The distributions of εX , ε1 and ε2 are symmetric;

Condition
The distribution of U is asymmetric.

Then the causal effects β1 and β2 are identifiable.
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Data Example

1U1

Underlying AD
progression

Y (1)

Decline in Orientation
(Change in Orientation Subscore

from baseline to Month 24)

Y (2)

Decline in Recall
(Change in Recall Subscore
from baseline to Month 24)

1X 1

Tau protein level

Alzheimer’s Disease Neuroimaging Initiative (ADNI)
925 subjects with complete measurements
measured covariates: age, gender and education length
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Testable implication

X = αX U + γ>X V + εX ,

Y (1) = α1U + β1X + γ>1 V + ε1,

Y (2) = α2U + β2X + γ>2 V + ε2.

Conditions:
εX , ε1, ε2 are symmetric

U is asymmetric

Implies that the residuals of X ,Y (1),Y (2) are asymmetric

17



(A)symmetry check of residual distributions.
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Estimation Results

Subscore category Crude Adjusted

Orientation −0.35 −0.30
(95% CI: [−0.43,−0.27]) (95% CI: [−0.42,−0.21])

Recall −0.11 −0.08
(95% CI: [-0.17,-0.06]) (95% CI: [−0.15, 0.004])

Unit: Change in subscore per 100 pg/mL

A higher tau level may lead to acceleration in cognitive
decline in both orientation and recall abilities

Effect attenuated compared to crude estimates
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Parallel outcomes: Summary

The key challenge to causal inference from observation
studies is unmeasured confounding

The parallel-outcomes framework provides a solution

Leverage condition independence structure among
multiple parallel outcomes

Promising for analyzing high-dimensional response data
Can use the extra outcomes to relax the conditional
independence assumption
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Thank you!

Paper: Zhou Y., Tang D., Kong D., and Wang L.. Promises of Parallel
Outcomes. Biometrika, 111.2 (2024): 537-550.

Slides: Available on my personal website
https://sites.google.com/site/linbowangpku/papers

Contact: Linbo Wang (University of Toronto), linbo.wang@utoronto.ca
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Comparison to Multi-cause causal inference (Wang and Blei, 2019)

Multiple exposures, One outcome

Shared confounding among exposures

X (1) ⊥⊥ X (2) ⊥⊥ . . .X (p) | U

U

X (2)X (1) X (3)

Y
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Comparison to Multi-cause causal inference (Wang and Blei, 2019)

Multiple exposures, One outcome

Shared confounding among exposures

X (1) ⊥⊥ X (2) ⊥⊥ . . .X (p) | U

Causal effects are identifiable under additional parametric
assumptions (Kong, Yang & LW, 2019)

Linear treatment effect model

An additional parametric binary choice model model for the
outcome Y
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Cox and Donnelly (2011, p.96). Principles of Applied Statistics:

If an issue can be addressed nonparametrically then it
will often be better to tackle it parametrically; however,
if it cannot be resolved nonparametrically then it is usu-
ally dangerous to resolve it parametrically.
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