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Causal Inference with Unmeasured Confounding

Underlying AD Biomarker level
progression (e.g. tau protein level)
U X

®

Cognitive functioning
(Calculation, orientation, recall...)

Classical solutions:
@ Randomized experiment
@ Measure all the confounders
Our solution:
@ Leverage the information in a multivariate outcome



Set-up: Causal Inference with Multiple Outcomes

A multiple-outcomes set-up

If U were observed, then
E[Y(x)] = EYE[Y | X = x, U]

However, if U were not fully observed, then E[Y(x)] is not
identifiable



Overview of the parallel-outcomes framework



Key Assumption: Parallel Outcomes

() ) ()

The simplest parallel-outcomes model

Parallel-outcomes Model:

Y 1 y@ g o Y® (U, X).



Example: Alzheimer’s Disease

Underlying AD progression  Biomarker level (e.g. tau protein level)

u X

() () ()

Calculation ability Orientation ability Recall ability



Another example: Gene expression analysis

Batch effect Exposure
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Another example: Gene expression analysis

Batch effect Exposure

u X

() () ()

Gene expression 1 Gene expression 2 Gene expression 3

Often assumed in Surrogate Variable Analysis in genomics
(Leek and Storey, 2008; Gagnon-Bartsch et al., 2013; Sun et al., 2012; Wang et al.,
2017)

Y=XB+Uy+e

@ Independent noise



Main Results

1. Causal effects are non-parametrically identifiable with
three parallel outcomes

2. Causal effects are identifiable with two parallel outcomes
under linear structural equation models (with additional
conditions)



Comparison to Auxiliary Variables Approaches

@ Instrumental variable (IV) methods (Wright and Wright (1928);
Goldberger (1972); Hernan and Robins (2006); LW and Tchetgen Tchetgen
(2018))

e Find an instrumental variable Z that acts like a
randomization

instrumental variable
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Comparison to Auxiliary Variables Approaches

@ Instrumental variable (IV) methods (Wright and Wright (1928);
Goldberger (1972); Hernan and Robins (2006); LW and Tchetgen Tchetgen
(2018))

e Find an instrumental variable Z that acts like a
randomization

@ Negative controls (Miao et al., 2018)
e Find a negative control exposure Z and a negative control
outcome W

The parallel-outcomes framework requires no external data



Non-parametric identification
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The simplest parallel-outcomes model

Foreach x =1,2,
pr(y™), y®, y®) | x) Zpr Y u,x)pr(y® | u, x)pr(y® | u, x)pr(u | x)

28 _1=7eqgns 2 parameters 2 2 1

Promising, but these are non-linear equations...
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Toward identifiability

For any y("), y( y() x we have

pr(y™, y®, y®) | x) Zpr V] u,x)pr(y® | u, x)pr(y® | u, x)pr(u | x)

pr(y®., y® | x) = Z pr(y® | u, x)pr(y® | u, x)pr(u | x)

u

Idea: if only we could take the ratio between these two equations...



The matrix adeStment method (Rothman et al., 2008; Hu, 2008)
For any y("), (@ y() x we have

pr(y™, y®, y®) | x) Zpr M u,x)pr(y® | u, x)pr(y® | u, x)pr(u | x)

pr(y®,y® | x) = Z pr(y® | u, x)pr(y® | u, x)pr(u | x)
u
Fix y("), and write summation in terms of matrix multiplication
Py, Y@, ¥® | x) = P(Y® | U.x)Po(y) | U, x)Po(U | x)P(Y® | U, x)T
P(Y®, YO | x) = P(Y® | U.x) Po(U | x)P(Y) | U.x)T

where Pp(-) are diagonal matrices.
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For any y("), (@ y() x we have

pr(y™, y®, y®) | x) Zpr M u,x)pr(y® | u, x)pr(y® | u, x)pr(u | x)

pr(y®,y® | x) = Z pr(y® | u, x)pr(y® | u, x)pr(u | x)
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Fix y("), and write summation in terms of matrix multiplication
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Identification

Theorem (Zhou, Tang, Kong and LW, 2024)

Under the parallel-outcomes model and some additional
regularity conditions, for all x, the potential outcome
distributions pr(yY(x)),j = 1,2,3 are identifiable in a discrete
parallel-outcome model in which all of Y('), Y2 Y®) U have k
levels.



Parametric Modeling



Linear structural equation modeling

@ @

Linear structural equation models:

X:aXU+fy;V+ex,
Y(1)IOJ1U+/))1X+’)/1TV+€1,
Y@ = apU+ o X 475 V + e

Here V represents measured covariates



Theorem (Zhou, Tang, Kong & LW, 2024)
Assume a linear structural model and the following conditions:

Condition
X, Y Y2 have finite second moments.

Condition
The distributions of ex, €1 and e are symmetric;

Condition
The distribution of U is asymmetric.

Then the causal effects 51 and o are identifiable.



Data Example

Underlying AD
progression Tau protein level
u X
Decline in Orientation Decline in Recall
(Change in Orientation Subscore (Change in Recall Subscore
from baseline to Month 24) from baseline to Month 24)

@ Alzheimer’s Disease Neuroimaging Initiative (ADNI)
@ 925 subjects with complete measurements
@ measured covariates: age, gender and education length



Testable implication

X =axU+yxV +ex,
Y = g U+ B1 X 4791 V + e,
Y(2) :a2U+B2X+’7;—V+€2.

Conditions:
@ ex, €1, €60 are symmetric

@ U is asymmetric

Implies that the residuals of X, Y(V)| Y(2) are asymmetric
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Estimation Results

Subscore category Crude Adjusted

Orientation -0.35 -0.30
(95% Cl: [-0.43,-0.27])  (95% Cl: [-0.42, —0.21])

Recall —-0.11 -0.08
(95% CI: [-0.17,-0.06])  (95% Cl: [-0.15,0.004])

Unit: Change in subscore per 100 pg/mL

@ A higher tau level may lead to acceleration in cognitive
decline in both orientation and recall abilities

@ Effect attenuated compared to crude estimates



Parallel outcomes: Summary

@ The key challenge to causal inference from observation
studies is unmeasured confounding

@ The parallel-outcomes framework provides a solution

@ Leverage condition independence structure among
multiple parallel outcomes

@ Promising for analyzing high-dimensional response data

@ Can use the extra outcomes to relax the conditional
independence assumption
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Thank you!

Paper: Zhou Y., Tang D., Kong D., and Wang L.. Promises of Parallel
Outcomes. Biometrika, 111.2 (2024): 537-550.

Slides: Available on my personal website
https://sites.google.com/site/linbowangpku/papers

Contact: Linbo Wang (University of Toronto), linbo.wang@utoronto.ca
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Comparison to Multi-cause causal inference (wang and Blei, 2019)

@ Multiple exposures, One outcome

@ Shared confounding among exposures
XM 1 x® . xP |y
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Comparison to Multi-cause causal inference (wang and Blei, 2019)

@ Multiple exposures, One outcome
@ Shared confounding among exposures
XM 1 x® . xP |y

Causal effects are identifiable under additional parametric
assumptions (Kong, Yang & LW, 2019)

@ Linear treatment effect model

@ An additional parametric binary choice model model for the
outcome Y
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Cox and Donnelly (2011, p.96). Principles of Applied Statistics:

If an issue can be addressed nonparametrically then it
will often be better to tackle it parametrically; however,
if it cannot be resolved nonparametrically then it is usu-
ally dangerous to resolve it parametrically.
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