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Causal inference with observational data: What can we do?

■ In many real-world applications, we do not have experimental data and need to rely on
observational data.

■ With observational data alone, we have no choice but to rely on additional assumptions for
the identification of causal parameters.

■ Different causal estimation and inference methods—such as those based on
unconfoundedness, DiD, IV, RDD, Synthetic Control, etc.—rely on different identification
assumptions.

■ Our job as scientists is to assess the pros and cons of each method in their ability to answer
the questions we (and the business) care about.
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Causality with Observational Data: What can we do?

■ In the last 10 years, we have seen a big jump in using ML methods to answer causal questions.

■ What do people usually mean when they say that they use a double machine learning
strategy?

■ Rely on unconfoundedness/selection on observables.

■ Drawback: Rule out selection on unobservables.
We need to have data on all confounders, i.e., on everything that (jointly) affects treatment
take-up and the outcomes of interest.

■ In practice, many science teams question the plausibility of this condition
(but not much is usually done to address it, especially in industry)
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The appeal of Difference-in-Differences: allow for selection on unobservables

■ DiD methods exploit variation in time (before vs. after) and across groups (treated vs.
untreated) to recover causal effects of interest.

■ Advantage: Allow for selection on unobservables and for time-trends.
We need to assume that, absent the treatment and conditional on covariates (features), the
outcome of interest would grow similarly across groups/cohorts - a parallel trends assumption.

■ Data Requirements: We need data from periods before and after the treatment/intervention
to use DiD (and some periods where no unit is treated).

This talk: How to combine DiD with ML to get semiparametric efficient estimators

Paper: Many more results, with a much greater amount of details.
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Practical Takeway Messages
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Our practical takeaways messages

■ DiD models are usually nonparametrically overidentified:
off-the-shelve DML using Y = Yt=post − Yt=pre as outcome is generally not semipar. efficient

■ Our EIFs are available in closed form and are automatically orthogonal moments:

▶ Provide a blueprint for efficient DML estimators

■ Gains in efficiency can be of first-order according to our simulations and empirical application

■ Optimal to weight pre-treatments and comparison groups in a non-uniform manner

■ When covariates are required for identification, the efficient weights also depend on covariate
values.

▶ For example, optimal weights for men may differ from those for women, as the outcomes for these two
covariate groups may have heterogeneous correlations over time.
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DiD with multiple periods



DiD Framework

■ “Short” panel data {(Yi,t=1, . . . , Yi,t=T, X′i,Gi)
′}ni=1 for n large and T finite fixed.

■ Treatment is binary, may have different starting dates, and is an absorbing state.
▶ Treatment does not “turn off”, as we do not impose assumptions on how long its effect can last

■ Yi,t(0g−1, 1T−g+1) ≡ Yi,t(g): Potential outcomes indexed by treatment starting date g.
▶ Potential outcome for unit i and time t if they were treated for the first time in period g.

■ Gi denotes the time unit i is first-treated, with Gi = ∞ if they stay untreated by time T.
▶ Gi ∈ G ⊆ {2, . . . , T,∞}: no unit treated in period t = 1

▶ With single treatment date at period t = g, Gi = g (treated units) or Gi = ∞ (untreated units).

▶ Gtrt = G \ {∞} denote the support of G among eventually treated units.

▶ Let Gg = 1{G = g}.

■ Due to time constraints, I will focus on the two-group setup.
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Target Parameters

■ The group-time average treatment effects for the treated:

ATT(g, t) := E[Yt(g)− Yt(∞)|G = g]

Average treatment effect at time period t of being first treated in period g compared to never being treated, among units that indeed

start treatment at time g.

■ ATT(g, t): can track down how treatment effect varies with elapsed treatment time (aka
event-time), e = t− g.
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Maintained Assumption: Sampling, Overlap, and No-anticipation

Assumption (Maintained Assumption (M))

(i) (S) {(Yi,t=1, . . . , Yi,t=T, X′i,Gi)
′}ni=1 is a random sample from (Yt=1, . . . , Yt=T, X′,G)′.

(ii) (O) For each g ∈ G , E[Gg|X] ∈ (0, 1) almost surely (a.s.).

(iii) (NA) For every g ∈ Gtrt, and every pre-treatment periods t < g,
E[Yi,t(g)|G = g, X] = E[Yi,t(∞)|G = g, X] almost surely.

■ The maintained Assumption M is not enough to identify ATT or ES type parameters.

■ DiD methods impose parallel trends assumptions to identify these parameters
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No variation in treatment timing

■ Single treatment period at time g: Gi = g (treated) or Gi = ∞ (untreated).

■ ES(e) = ATT(g,g+ e).

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated
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Parallel Trends Assumption: All periods

Assumption (PT in all periods)

For each t ∈ {2, . . . , T},

E[Yt(∞)− Yt−1(∞)|G = g, X] = E[Yt(∞)− Yt−1(∞)|G = ∞, X] a.s.

■ Impose parallel trends in all periods.

■ Allows us to use any pre-treatment period as a baseline.

■ Without covariates, easy to show that for any t ≥ g and any t′ < g,

ATT(g, t) = E[Yt − Yt′ |G = g]− E[Yt − Yt′ |G = ∞].

■ If we were gifted 10 more pre-treatment periods of data, we could easily use all of them to
compute ATT(g, t).

■ How to do that efficiently, such that we maximize precision?
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Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated
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Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated

t′ t

ATT(g, t = 8) using t′ = 1 as baseline: DML for ATT with Y = Yt=8 − Yt=1

10



Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated

t′ t

ATT(g, t = 8) using t′ = 2 as baseline: DML for ATT with Y = Yt=8 − Yt=2
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Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated

t′ t

ATT(g, t = 8) using t′ = 3 as baseline: DML for ATT with Y = Yt=8 − Yt=3
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Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated

t′ t

ATT(g, t = 8) using t′ = 4 as baseline: DML for ATT with Y = Yt=8 − Yt=4

10



Understanding the sources of over-identification

1 2 3 4 5 6 7 8 9 10
time: t = 1, · · · , T = 10

Treated Untreated

t′ t

ATT(g, t = 8) using t′ = 5 as baseline: DML for ATT with Y = Yt=8 − Yt=5
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Intuition on how to get semiparametric efficiency

■ For each 1 ≤ t′ ≤ g− 1, we fix the baseline period at t′, and compute the “efficient influence
function” for ATT(g, t) as-if there were only 2 groups, G = g and G = ∞, and two periods, t
(post-treatment) and t′ (pre-treatment)

▶ Akin to compute the “DR scores” in DML language.

■ Stack all the non-collinear influence functions into a vector, IFatt(g,t).

■ Compute the covariance of IFatt(g,t) given covariates, Vgt(X) = Cov
(

IFatt(g,t)|X
)
.

■ Efficient Influence Function for ATT(g, t) is given by

EIFatt(g,t) =
1′Vgt(X)−1
1′Vgt(X)−11

IFatt(g,t).

■ Next, we explore these results to obtain EIF-based estimands for ATT(g, t), which serve as a
blueprint for efficient estimation.
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Using EIF as a blueprint for estimating ATT(g,t)

■ The key is to explore that E[EIFatt(g,t)] = 0 to get IF-based estimand:

ATT(g, t) = E

[ 1′Vgt(X)−1
1′Vgt(X)−11

θg,t(W)

]
, (1)

where pg(X) = E[Gg|X], θg,t(W) = (θg,t,1(W), . . . , θg,t,g−1(W))′ is a (g− 1)× 1 column vector with

θg,t,t′(W) =
1

P(G = g)

(
Gg −

(1− Gg)pg(X)
1− pg(X)

)
(Yt − Yt′ − E[Yt − Yt′ |G = ∞, X]) .

■ Here, θg,t(W) is a vector of DR DiD “integrands”, each being computed pretending we were in
the 2× 2 DiD setup of Sant’Anna and Zhao (2020).

■ Efficient DiD estimators: apply plug-in principle, or do DML.
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Understanding the weights across pre-treatment periods

■ The optimal way to aggregate across pre-treatment periods to learn about ATT(g, t) is given by
the inverse of Vgt(X), the conditional covariance of the influence functions.

■ This is OK, but it does not really help us better understand these weights.

■ In the paper, we show that one can use the “easier-to-understand” matrix V∗gt(X) to form the
optimal weights, where dim(V∗gt(X)) = dim(Vgt(X)) and the (j, k)-th element being V∗gt(X) is
given by

1
pg(X)

Cov(Yt − Yj, Yt − Yk|G = g, X) + 1
1− pg(X)

Cov(Yt − Yj, Yt − Yk|G = ∞, X). (2)
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Some important remarks about the efficient weights

■ Efficient weights depend on the covariance of outcome changes for each treatment group;

■ Efficient weights vary with the time of the ATT of interest, t.

■ Efficient weights are covariate-dependent (different from GMM)

■ Efficient weights are generally not constant across pre-treatment periods.

■ EIF is obtained by optimally weighting the individual IFs

■ Most DiD and ES estimators are not semiparametrically efficient:

▶ Either only looks at a single pre-treatment t′ :
DTWE, de Chaisemartin and D’Haultfœuille (2020, 2024), Callaway and Sant’Anna (2021), Sun and
Abraham (2021).

▶ or taking simple average over t′ < g:
TWFE, Wooldridge (2021), Gardner (2021),Borusyak, Jaravel and Spiess (2024), Lee and Wooldridge (2023)
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An Empirical Application



What is causal effect of hospitalization on out-of-pocket medical spending?

■ Dobkin, Finkelstein, Kluender and Notowidigdo (2018) study the effect of hospitalization on
out-of-pocket medical spending and several other outcomes.

■ They explore the variation in hospitalization time across individuals and use a DiD and ES
strategy to estimate the causal effects of hospitalization.

■ We follow the sample construction of Sun and Abraham (2021), which explores the publicly
available survey data from the Health and Retirement Study (HRS) from the replication
package of Dobkin et al. (2018):

▶ Adults hospitalized at ages 50–59, excluding pregnancy-related admissions.

▶ Balanced panel spanning waves 7–11 (2004–2012).

▶ Final Sample: 652 individuals in 4 treatment groups

▶ Gi = 8 (252), Gi = 9 (176), Gi = 10 (163), Gi = ∞ (65; re-labeled the Gi = 11 as “never-treated”).
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Parameters of Interest and Different DiD Estimators

■ Parameters of Interest: Post-treatment effects ATT(g, t) and aggregated event-study measures
ES(e), ESavg.

■ Estimates calculated using multiple DiD methods:
▶ Our Efficient DiD estimator (EDiD)

▶ Callaway and Sant’Anna (2021) and Sun and Abraham (2021) estimator using never-treated as
comparison group (CS-SA)

▶ Callaway and Sant’Anna (2021) and de Chaisemartin and D’Haultfœuille (2020) estimators using
not-yet-treated s comparison group (CS-dCDH)

▶ Borusyak et al. (2024), Gardner (2021), and Wooldridge (2021) imputation estimators (BJS-G-W).

■ As PT is plausible in this context (Dobkin et al., 2018 and Sun and Abraham, 2021), all point
estimates are expected to be similar.

■ Our efficient DiD estimator is expected to deliver gains in efficiency.
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Point estimates are indeed similar across estimators

Estimator ATT(8, 8) ATT(8, 9) ATT(8, 10) ATT(9, 9) ATT(9, 10) ATT(10, 10) ES(0) ES(1) ES(2) ESavg
EDiD 3072 1112 1038 3063 90 2908 3024 692 1038 1585

(806) (637) (817) (690) (641) (894) (486) (471) (816) (521)

CS-SA 2826 825 800 3031 107 3092 2960 530 800 1430
(1035) (909) (1008) (702) (651) (995) (539) (585) (1008) (647)

CS-dCDH 3029 1248 800 3324 107 3092 3134 779 800 1571
(913) (861) (1008) (959) (651) (995) (536) (570) (1008) (566)

BJS-G-W 3029 1285 1021 3239 77 2758 3017 788 1021 1609
(916) (767) (851) (862) (729) (957) (555) (587) (851) (582)
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Our Efficient DiD provides substantial gains in efficiency

■ Estimates of the asymptotic relative efficiency (ARE) of our proposed efficient DiD estimator
with respect to the other available DiD estimators.

■ Heuristically, ARE provides a relative measure of sample size needed for other DiD estimators
to achieve the same precision as our efficient DiD estimator.

Estimator ATT(8, 8) ATT(8, 9) ATT(8, 10) ATT(9, 9) ATT(9, 10) ATT(10, 10) ES(0) ES(1) ES(2) ESavg
EDiD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

CS-SA 1.65 2.04 1.52 1.04 1.03 1.24 1.23 1.54 1.52 1.54

CS-dCDH 1.28 1.83 1.52 1.93 1.03 1.24 1.21 1.46 1.52 1.18

BJS-G-W 1.29 1.45 1.09 1.56 1.29 1.15 1.30 1.55 1.09 1.25

■ Not possible to rank the other DiD estimators in terms of ARE in the application:
▶ BJS-G-W: Efficient under homoskedasticity and no residual serial correlation (Wooldridge, 2021; Borusyak

et al., 2024).
18



Visualizing Event-Study stability

0

1000

2000

3000

4000

0 1 2
Event Time

E
ve

nt
 S

tu
dy

 E
st

im
at

e

19



Understanding the Efficient Weights for ATT(g,t)’s
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Understanding the Efficient Weights for ES(e)’s
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Conclusion



Conclusion

■ DiD models are usually nonparametrically overidentified:
off-the-shelve DML using Y = Yt=post − Yt=pre as outcome is generally not semipar. efficient

■ Using our EIF as a blueprint leads to semiparametrically efficient estimators: other
implementations do not have this strong statistical guarantee

■ Gains in efficiency can be of first-order according to our simulations and empirical application

■ Optimal to weight pre-treatments and comparison groups in a non-uniform manner

■ We will work on providing code to automate all this for you!
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Thanks!
pedro.santanna@emory.edu

psantanna.com

@pedrohcgs

@pedrosantanna.bsky.social
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